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CHAPTER 1
INTRODUCTION

1. Introduction

PEA (Propellant Embedded Anchor) research is aimed at
understanding the fundamental behavior during penetration and
pullout of a PEA into discontinuous brittle material. Based on this
understanding, we intend to create a predictive model for
penetration and pullout and to validate it with laboratory
experiments thereby updating the model based on the experimental
results. The model will then serve as a basis for prototype PEA
design, in particular probing information in most primary shape and
size. The fundamental character of the MIT PEA research makes it
possible to not only provide the basis for PEA models but also for
other problems where penetration and pullout have to be considered,
notably tension piles in any type of ground and structural fasteners.

The principle of the MIT PEA research is the consideration of
penetration and pullout in a unified manner. The penetration of a
PEA into a discontinuous mass, as a matter of fact into any ground,
changes stress field and material properties in the penetrated
medium and at the medium-penetrator interface. The stress field
and medium characteristics in turn affect the extraction process, i.e.
pullout resistance.

The research conducted at MIT during the years 1987 to 1989
consisted of two smaller efforts in 1987 and 1988 supported solely
by the U.S. Department of the Navy; the major effort in 1989 was
supported by the MIT Sea Grant College Program with funding from
the U.S. Department of the Navy.

1.2._ Preceding work

In 1987 the literature on propellant embedded anchors and
penetration in general was reviewed. This led to the conclusion that
neither a suitable model nor even the basic understanding of
penetration into jointed rock existed. The understanding of
penetration into ductile material is better but many of the models
are unsatisfactory. In 1988 we took a first step at remedying this
situation by conducting a series of experiments on jointed rock



models (Propellant Embedded Anchors in Jointed Rock). This test
series was continued and completed during the first 5 months of
1989. We achieved our goal and have now a firm understanding of
what goes on in deep penetration into and pullout from jointed rock.
A paper (Model Experiments for Propellant Embedded Rock Anchors)
"has been written on this subject and is, at present, being reviewed
for publication in Rock Mechanics and Rock Engineering. The
mechanisms identified in this research are built into the MIT jointed
rock model which will be used for the penetration and pullout
mechanism models.

joT arch

On the basis of the preceding research, we started in 1989 the
major research effort which, as stated before, involves model
development and experimental validation.

As originally proposed, this effort should continue during 1990
and 1991.

On the basis of the 1987 review of penetration and pullout
models, we decided that combining the strain path method with a
suitable model of jointed rock will provide us with a sound and
practically feasible approach. The strain path method, which was
developed for deep penetration into incompressible ductile materials,
allows one to determine the two-dimensional strain and stress field
on the basis of ground parameters which can be determined by
standard tests. This is in contrast to cavity expansion methods which
are limited to one dimension on the one hand and advanced
numerical methods for which the determination of parameters is
very difficult. Nevertheless, it is necessary to expand the strain path
method first to compressible ductile materials and to eventually
combine it with a suitable model representing rock masses, i.e. brittle
discontinua. During the second half of 1989 our main research
efforts were directed toward such further development of the strain
path method. The two major achievements were the simple
penetration prediction model for incompressible, cohesive and
frictional ductile materials and the complete stress-strain field



formulation for cohesive and frictional, incompressible ductile
materials, as well as initial steps for the compressible formulauon.

The simple penetration prediction model, which was validated by
comparison with field results from the literature, is important for
two reasons. First, it allows one to predict penetration depth into
ductile materials based on standard soil properties. In other words,
complex modelling and testing with the associated difficulties
prediction is avoided. Second, the fact that a strain path method
based penetration prediction model produces satisfactory (i.e.,
validated) results, indicates that the strain path method provides a
reliable approach to rapid penetration modelling!

The complete strain-stress formulation based on the strain path
method for penetration into frictional incompressible ductile
materials did not exist so far. As indicated above, the stress field is
needed for pullout resistance prediction. In addition to being useful
for penetration into frictional materials such as sand, the formulation
also provides a bound for penetration models for jointed rock.

Both the penetration depth model and the complete strain-stress
field model will be extended in the coming year. Most importantly,
this will involve combination of the strain path method with the
jointed rock model, but it will also include the comsideration of other
efforts such as the free surface, strain rate and possibly special
interface mechanisms.

The initial series of experiments conducted in 1988 and in the
first part of 1989 were entirely satisfactory in letting us gain insight
into the fundamental mechanisms during penetration into brittle
discontinua and thus providing the basis for the extended jointed
rock models. They had the disadvantage, however, of having only
limited instrumentation. For the proposed validation experiments, it
will be necessary to have a very good idea on the stress field in the
medium and eventually also at the penetrator-medium interface.
Most importantly, it is necessary to kmow the acceleration-
deceleration history of the penetrator. We, therefore, designed and
built a new experimental setup for penetration into jointed rock
models (and simultaneously for testing penetration into structural



materials). The new setup includes a Hilti fastener gun (donated by
Hilti) which we equipped with a new piston and instrumented with
an accelerometer. In addition, the medium models were
reconfigured such that we can apply and measure confining stresses
before and during the penetration-pullout experiments. Initial tests
with this equipment were run and showed that it performed
satisfactorily.

The 1989 PEA research has thus provided complete
understanding of brittle discontinum behavior in penetration and
pullout, led to the development of penetration prediction and
complete stress field models for all ductile materials and included
the development, construction and testing of the major experimental
equipment. All this provides not only the basis for the penetration
and pullout prediction model for brittle discontinua; since it is
fundamental work, the 1989 research also can provide the basis for
penetration and pullout in any geological or structural material.

1.4 Report Structure

Chapters 2 and 3 are devoted to experimentation. Chapter 2
contains a description of the final phase of the initial
experimentation which we conducted in 1989 as well as the major
results of the entire 88/89 experimental series. This is followed by a
description of the design of the new test equipment and of the initial
experiments conducted with it. Chapters 4 through 6 address
modelling. In Chapter 4 we are going to expand on the comments
above (Section 1.3) and describe our modelling concept in more
detail. This is followed by a description of the major strain path
model extension in Chapter 5 and, in Chapter 6, by a description of
the penetration prediction model. Concluding comments and an
outlook are given in Chapter 7.

———

e
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CHAPTER 2
TEST SERIES SPRING 1989

2.1 Introduction

From the results of the preceding penetration and pullout tests
presented in the report entitled "Propellant Embedded Anchors in
Jointed Rock,” (Einstein and Jeng, 1988), we concluded that the
confining stress greatly influences penetration resistance, fracture
phenomena and pullout resistance. In the preceding test series, the
confining stress was applied by using aluminum shells and hose
clamps which constrained the outward radial movement of the
cylindrical specimen during penetration. Specifically, the confining
stress was applied with shells and clamps which were installed
before the penetration test; as the penetrator penetrated the
specimen, the specimen tended to expand outward in the radial
direction which produced additional confining stresses as the shell-
clamp system resisted the radial expansion. The magnitude of the
applied confining stress and the amount of radial expansion during
the penetration process were, however, not measured. Given the
apparent importance of the confining stress, this lack of exact
knowledge was unsatisfactory, and it was decided to run additional
tests in which the confining stress was measured.

Specifically, in the current test series, the stresses in the hose
clamps were measured to record the confining stresses which existed
during the penetration and puliout processes. In addition, we used
this test series to study the effect of the composition of the resin
mixture. Otherwise, gypsum and resin subjected to rapid and slow
penetration were used as before.

Section 2.2 below describes the testing program of the Spring
89 test series, including the types of tests and the general testing
schedule. In Sections 2.3 through 2.5, the testing procedures, test
results and analyses are reported. Section 2.6 specifically addresses
the confining stress issue. Measured circumferential strain (gg) and
calculated circumferential stress (ocg) are presented as are the
estimated normal stresses (o,) acting on the shank of the penetrator.
In Section 2.7 the results of the Spring 89 test series are compared to



those of the previous test series. General conclusions are drawn in
Section 2.8

2.2 Testing Program
The main purpose of the Spring 1989 test series was to measure

the confining stress. This was achieved by measuring the

circumferential strain of the hose clamps and by calculating the

corresponding hoop (circumferential) stress.

Most of the other characteristics of the Spring 89 test series
were the same as those in test series 12, 13 and 15 (see Einstein and
Jeng, 1988 and Table 2.1) such that the results of different test series
can be compared.

The Spring 89 test series consisted of the four test series 17 to
20 (Table 2.1):

1. Test series 17: Slow penetration tests followed by pullout tests,
using 5.1 x 10.2 cm cylindrical gypsum specimens (intact
specimens only, replicating the conditions of test series 13).

2. Test series 18: Rapid penetration tests followed by pullout tests,
using 5.1 x 10.2 cm cylindrical gypsum specimens with varying
joint spacings (replicating the conditions of test series 12).

3. Test series 19: Rapid penetration tests followed by pullout tests,
using 5.1 x 10.2 cm cylindrical resin specimens (with the ratio of
curing agent:resin of 1/20 by weight) with varying joint spacings
(replicating the conditions in test series 13).

4. Test series 20: Rapid penetration tests followed by pullout tests,
using 5.1 x 10.2 c¢m cylindrical resin specimens (with the ratio of
curing agent:resin of 1/10 by weight) with varying joint spacings
(similar testing conditions as those in test series 19 except for the
increased amount of curing agent).

The resin mixtures in test series 19 and 20 were different in
order to study the effect of the mixture on fracture phenomena and
mechanical properties. The curing agent was Ancamine K-61-B.



The testing conditions common to test series 17 through 20
were as follows:

1. Penetrator Type B (diameter 3.7 mm, sharp tip; see Fig. 2.1)

2. All the specimens were tested under confined conditions. The
confinement was provided as in test series 12, 13 and 15 (see Fig.
2.2a). However, a strain gage was attached to each hose clamp to
measure its deformation.

3. All the specimens were normal size (cylinders with a diameter of
5.1 cm and a height of 10.2 cm).

4. The orientation of jointing was O degree (horizontal joints) and the
joints were plain (joint surfaces in direct contact with each other).

5. Number of specimens: 6 gypsum specimens and 3 resin specimens
per series.

Some additional investigations on the basic properties of
gypsum were also performed. By using a n-tape, the diameter of the
cylinder specimen can be accurately measured. (The =n-tape can
measure the diameter at a precision of 0.01 mm.) The diameters of
gypsum specimens after casting and after curing were measured (see
Table 2.2). The data indicate that the diameter of the gypsum
specimens did not change during curing, i.e., the specimens did not
shrink.

The basic properties of the gypsum specimens are as follows:

diameter = 5.1 cm

height = 10.2 cm

weight before curing = 360 g

weight after curing = 300 g

density before curing = 1.74 g/cm3

density after curing = 1.46 g/fcm3

void ratio (e) = 0.58
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The penetrator was placed on the top of the specimen
vertically beneath the loading frame of a feedback-controlled loading
‘machine which pressed it into the specimen at a penctration rate of
0.5 mm per minute. A penetration force vs. penetration depth curve
was recorded for each specimen. The final penetration depth was 20
mm if the penetration force did not exceed the capacity of the
loading machine (5 KN). If the penetration force reached the loading
capacity of the machine, the slow penetration test was terminated
immediately.

Following the slow penetration test, the loading frame was
moved in the opposite direction to conduct the pullout test. A
pullout force vs. pullout displacement curve was also recorded. The
pullout test was terminated when the pullout force fell below 20 % of
the peak value.

2.3.2 Test Results

The results of the slow penetration tests include:

1. Slow penetration force vs. penetration displacement curves.

2. The pullout force vs. pullout displacement curves.

3. A record of the fracture phenomena (i.e. the type of fracturing
such as radial cracking, chipping and crushing), of crack depth, of
penetration depth, and of other information (such as the
circumferential strains at different stages, fractography and
testing conditions).

The detailed data are kept at MIT.

A typical penetration force vs. penetration depth curve is
shown in Fig. 2.3. The curve has the following characteristics: It
starts with an almost linear section (OA) and breaks at point A. The
force drops (section AB), but increases again as the penetration depth
increases. The slope in section CD is practically constant but smaller
than the slope in section OA. There are several small breaks within
section CD. The slow penetration test is terminated at point D.



No radial cracks could be observed before the drop of the curve
(marked by A in Fig. 2.3), but right after this sudden drop (usually
accompanied by a breaking sound), several cracks appeared. This
indicates that the radial cracks initiate at A. The penetration depth
where the radial cracks initiate is 6.3 mm * 1.3 mm. The penetration
force at the first crack initiation is 3.05 £ 0.90 KN. The following
small breaks within section CD of the curve may indicate that the
cracks propagate further.

In Figure 2.3, the area enclosed by OABCDE represents the
energy imparted to the system (specimen + clamps), which is:

Specimen # Energy (Joule)

SGO1 42.5
SG02 54.2
SGO3 53.1
SGO04 63.5
SGO5 57.7
SGO6 52.9

Mean Imparted Energy = 54.0 £ 6.9 Joule

Presumably, to achieve the same penetration depth, the energy
imparted in rapid penetration tests should be equal or larger than
that in slow penetration tests, i.e., the slow penetration tests
represent a lower bound of the emergy required in rapid penetration
tests. The mean energy in slow penetration tests is 34.0 joules, We
can thus calculate the minimum impact velocity required in rapid
penetration tests:

1. Energy required in slow penetration: 54 joules

2. The mass of the penetrator is 5.1 grams and the mass of the
piston is 207.4 grams.

3. To achieve the same penetration depth, the kinetic energy
required in rapid penetration tests has to be 2 54 joules.

4. Assuming E = 1/2 mv2, and assuming that the mass, m, is the
mass of penetrator only (5 grams), the minimum impact velocity
is 145.5 m/s. If the piston is attached to the penetrator during
the penetrator processes, its mass should be considered also. This
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results in the minimum impact velocity of 22.5 m/s. We
measured the initial velocity of the penetrator by shooting it
across 5 electrical wires spaced at 3.2mm and recording the time
intervals at which the wires were broken. The test results show
that the initial velocity of the penetrator was greater or equal to
18 m/s. This result corresponds well to the lower bound obtained
from the slow penetration tests.

The penetration force can be used to express penetration
resistance by dividing it by the embedded area (see Fig. 2.4 for
details on the calculation of the embedded area). A typical
penetration resistance-displacement curve is shown in Fig. 2.5. It has
the following characteristics: It starts with a steep slope, Si, and
breaks at point A, which corresponds to point A in Fig. 2.3 and to the
first occurrence of radial! cracks. The resistance drops (AC) and then
increases again as the penetration depth increases. The curve has a
flatter slope, S, after point D, with decreasing inclination as
penetration increases.

In the slow penetration tests, two to four radial cracks were
observed in all of the specimens. The number of radial cracks
produced in these tests is smaller than the number (3 to 7) produced
in rapid penetration tests as will be shown in Section 2.4. The mean
crack depth is 8.9 c¢m, which is greater than the mean crack depth
(7.4 cm) in the rapid penetration tests. A chipped zone and a
crushed zone (see Fig. 3.6 of the 1988 PEA report by Einstein and
Jeng) were observed in each specimen. The detailed fracture
phenomena of each specimen are described in Table 2.3, which also
includes the observations on crack depth and penetration depth,

The results of the pullout tests following slow penetration will
be discussed in conjunction with the other pullout tests (Section 2.5).

2.4 Rapid P ion T T Series 18. 19 | 20

2.4.1 Testing Procedure
The specimens were confined as shown in Fig. 2.2a and the
tests were conducted as in the preceding test series (see Einstein and
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Jeng, 1988). After each penetration test, the specimen was fixed by
a holding frame (see Fig. 2.6) and the pullout test was performed.

2.4.2  Test Results

The results of the rapid penetration tests are:

1. The pullout force vs. displacement curve for each specimen.

2. A record of the fracture phenomena (i.e. the type of fracturing
such as radial cracking, chipping and crushing), of crack depth, of
penetration depth, and of other information (such as the
circumferential strains at different stages, fractography and
testing conditions).

The fracture phenomena observed for all gypsum specimens
are radial cracking, crushing and chipping. The number of radial
cracks ranges from 3 to 7. The penetration depth ranges from 2.1 cm
to 2.4 cm. The crack depths (mean value) are 7.4 cm, 4.0 cm, 2.0 cm,
2.8 cm and 2.9 c¢cm for the intact specimen and for specimens with
joint spacings of 4 cm, 2 ¢cm, 1 ¢cm and 0.5 cm, respectively. The
intact specimen has thus the greatest crack depth and the crack
depth decreases to about the magnitude of the penetration depth as
the joint spacing decreases.

The resin specimens show a crushed zone (all specimens),
radial cracks (20 out of 30) and a chipped zone (only 2 out of 30
specimens). Many resin specimens (10 out of 30) did thus not have
radial cracks after penetration but only the hole produced by the
penetrator. The mean penetration depth was 1.76 + 0.29 c¢m for the
cracked specimens and 1.26 + 0.34 cm for non-cracked specimens.
This indicates that the penetration depth is smaller if there are no
radial cracks.

The detailed phenomena including crack depth and penetration
depth observed in each specimen are listed in Table 2.3. The
fracture phenomena in resin will be further discussed in Section 2.7
when comparing them to those in the previous test series.

The results of the pullout tests which follow the rapid
penetration tests will be discussed in Section 2.5.
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2.5.1 Testing Procedures

The test setup is shown in Fig. 2.6. The penetrator was
extracted at a rate of 0.5 mm/sec and a pullout force versus
displacement curve was recorded for each test. The detailed
procedures are described in Einstein and Jeng (1988).

2.5.2 Test Results

A typical pullout force vs. pullout displacement curve for tests
on gypsum specimens is shown in Fig. 2.7. It has the following
characteristics:

I. The curve starts with a sharp approximately linear rise (OA) and
reaches peak at point A.

. The pullout force drops sharply after the peak (AB).

. Following the drop is a stick-slip section (BCD).

. A segment without stick-slip follows (DE).

. The pullout test is terminated at point E.

For resin, the typical pullout force vs. displacement curve is
like that shown in Fig. 2.8. There are no stick-slip phenomena nor is
there any sharp drop of force right after the peak, i.e. the behavior is
generally more ductile.

An interesting observation is that the pullout force practically
disappears at displacements of 6 to 10 mm (for gypsum), although
the penetration depth is about 20 mm.

The pullout force-displacement curve can be expressed as a
pullout resistance-displacement curve such as that shown in Fig, 2.9
for gypsum by dividing the force by the embedded shank area, A
(see Fig. 2.4). The tip area Ay is not considered in computing the
resistance; however the area A; is reduced as a function of
displacement. The curve has a peak at point A (which corresponds to
the the point A in Fig. 2.7) followed by a sharp drop of resistance
(segment AB). The pullout resistance decreases slowly in a nearly
linear segment BC. The pullout resistance vanishes at a displacement
of about 9 mm, in the case shown in Fig. 2.9.

th & W b
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The pullout resistance-displacement curve allows one to get an
indication on the penetrator interface shearing resistance due to
friction. One can reasonably assume that the drop AB represents
breaking of cohesive (tensile) bonds at the tip (area Az in Fig. 2.4)
and along the shank (area Ap in Fig. 2.4). Segment BC represents thus
frictional interface resistance only. This is supported by the fact that
this segment is horizontal or nearly horizontal (recall that the
reduction of area Ay, as the penetrator is pulled out, is considered in
computing the pullout resistance). The pullout resistance
represented by the "plateau” BC, which is approximately 8 MPa in
Fig. 2.9, is thus the frictional interface resistance during pullout.

The maximum (peak) pullout resistances in test series 17 to 20
are listed in Table 2.4. It will be noted that the maximum pullout
resistance in slow penetration tests is 50% lower than that in rapid
penetration tests. The change of the maximum pullout resistance
with joint spacing is shown in Fig. 2.10. For gypsum specimens, the
maximum pullout resistance decreases slightly as the joint spacing
decreases. Resin test series 20 shows a similar trend, while test
series 19 does only do so for spacings of 2 cm and less.

Measurement of Circumferenti 1 h

2.6.1 Testing Procedures

Recall that six aluminum shells, cut from an aluminum pipe,
were tightened by four hose clamps as shown in Fig. 2.2a to provide
the confinement. Three clamps (clamp #1, 2 and 3) were installed
around the upper part of the specimen and one clamp was installed
at the bottom of the specimen. A strain gage, attached to each clamp
was used to measure the circumferential strain (geg). The
configuration for reading the circumferential strain is shown in Fig.
2.11. The readout device consisted of a 1/2 Wheatstone bridge (with
a dummy strain gage to compensate for temperature effects), a
switch box, a power supply and a volimeter.

The procedure for measuring circumferential strains (eg) at the

boundary was as follows:
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1. The "shell-clamp” confinement device was installed.

2. Three readings were taken during the test at the following stages:
before penetration, after penetration and after pullout of the
penetrator.

3. The circumferential stress (cg) applied at the boundary was
obtained by assuming that a) the thickness of the clamp was very
small and b) there is no yielding anywhere within the clamp such
that the elastic relation o9 = E €¢ is applicable (where E 1is the
Young's modulus of clamp). The clamp is made of stainless steel
(AISI # 301) with an E value 28 x 106 psi (2 x 105 MPa). An
example calculation is given in Appendix A. To check the validity
of assumption (b), the limiting stress/strain to cause yielding in
the clamp has been evaluated in Appendix B. The dimension of
the stainless hose clamps used in these tests is also shown in
Appendix B. The calculation indicates that yielding could occur at
the narrow cross sectional area of the clamp if the circumferential
strain is greater than 0.11% or if the circumferential stress is
greater than 220 MPa. The observed strain does not exceed these
limiting values and assumption (b) is thus applicable.

One has to be aware of the fact that the confining stress
application and measurement may be subject to some, albeit small,
errors. We assume that only axial stresses (pure tension) exists in
the hose clamps (Fig. 2.2b) and that, therefore, a single strain gage at
the outer surface provides sufficient information to determine the
stresses in the clamp. The assumption of pure tension will be
incorrect if bending occurs (Compensating for bending by placing
strain gages on the interior surface of the hose clamp is not also
possible, because the strain gages would produce an uneven contact
between the clamp and the aluminum shells). Such bending occurs if
the radius of the specimen is different from the radius of the hose
clamp which is usually the case. However, the bending strain is
relatively small compared to the axial strain.
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2.6.2 Test Resuits (Test Series 17 1o 20)
The ep measured after the penetration test and the calculated og

for each specimen are listed in Table 2.5. The changes (from the
initial state) of the og values in test series 17 to 20 are summarized

below:
Clamp # After Penetration After Pullout
(MPa) (MPa)
1 100 to 200 50 to 100
2 50 to 150 50 to 80
3 -50 to +30 -50 to +30
4 -20 to +20 -10 to + 10

These results allow one to draw following conclusions:

1. The measured stresses decrease from the top clamp to the bottom
clamp.

2. The negative sign indicates that the circumferential stress
decreases (compared to the initial state) after the penetration test.
The decrease in confining stress from the initial state implies that
there is a confining stress when the clamps are installed.

3. After the pullout test the stress (strain) does not return to zero,
which indicates that the stress at the outer boundary is not
released. Some of the strains and stresses produced by the
penetrator in the specimen remain thus locked in.

The measured circumferential stresses can also be used to
obtain a rough idea about the normal stress acting on the shank of
the penetrator. The following assumptions were made for this
purpose:

1. All the radial cracks extend to the boundary, and they are planes
perpendicular to the top surface of the specimen.

2. The stresses acting in the plane perpendicular to the penetrator
axis are og at the boundary (applied by the clamp) and og at the
shank interface as shown in Fig. 2.12.
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According to these simplified assumptions, the relationship
between o, on the shank and the measured og at the boundary is
solved from the equilibrium of forces acting on the specimen (see Fig.
2.12). This yields the following relation:

Onlshank = 0.3140glclamp

As described in Section 2.5, the frictional shearing resistance <t
on the shank can be estimated from the pullout resistance-
displacement curve. The 1 values for each gypsum specimen are
listed in Table 2.5 (column 7). The measured e¢g and calculated og and
op are also listed in Table 2.5.

The shearing resistance due to friction (t) and the normal stress
(oq) are plotted in Fig. 2.13, which should allow us to determine a
friction coefficient for the penetrator interface from t=uc,. As shown
in Fig. 2.13, the data points are so scattered that no single
relationship for all the points can be obtained. Also, most of the data
vary within the range of pu= 0.06 to p= 0.3. These p are low (the
friction angle of gypsum is about 33°, i.e., p is about 0.65). It will
also be noted that for a given specimen configuration (intact or
specific joint spacing), the shearing resistance 1 is, in most cases,
independent of the normal stress.

The resin specimens are not considered in this discussion
because 1) during the rapid penetration test on resin specimens, the
hose clamp was not strong enough to constrain the resin specimens
and an additional C-clamp had to be added to increase the
confinement; therefore, the stresses (measured with the strain gages
in the clamps) do not represent the stresses during the penetration
process 2) the analysis is only valid for specimens with radial cracks.

27 ¢ . th Previous Test Resul
221 Comparison of Fracture Phenomena

For gypsum, the fracture phenomena (which include radial
cracking, crushing and chipping) of test series 12 and 18 are similar

(see Fig. 2.14).
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For resin, the fracture phenomena of test series 13, 19 and 20
differed. It was observed that (see Fig. 2.15):
1. 13 out of 15 resin specimens (with curing agent to resin ratio =
1/20) were fractured in test series 19.
2. 5 out of 10 resin specimens (with curing agent to resin ratio =
1/20) were fractured in test series 13.
3. 6 out of 15 resin specimens (with curing agent to resin ratio =
~ 1/10) were fractured in test series 20.
The resin in test series 13 and 19 was the same mixture and
was tested under the same testing conditions; however, as shown
above and in Fig. 15, the fracture phenomena differed.

2.7.2 Comparison of Penetration Depth and Crack Depth

A summary of the penetration depths and crack depths in test
series 18, 19 and 20 is given in Table 2.6 while a summary of the
penetration depths and crack depths of the previous test series
(series 12 and 13) is given in Table 2.7

Again, the penetration depth and crack depth for test series 12
and 18 (i.e. for gypsum) are similar. The respective depths for test
series 13 and 19 (resin) also compare reasonably well while the
different curing agent ratio in series 20 evidently causes cracks
which are not as deep.

n 1 Resi

The pullout resistance is a function of material properties,
fracture phenomena, joint spacing and the other factors. The gypsum
specimens in test series 12 and 18 were tested under the same
conditions and have similar fracture phenomena. This is consistent
with the similar pullout resistances in these two test series (the
pullout resistance of test series 18 is somewhat higher than that of
test series 12). The pullout resistance, in most cases, decreases
slightly as the joint spacing decreases. For resin, the pullout
resistance differs from one test series to another, even for the two
test series with the same resin mixture (test series 13 and 19).
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2.8 Conclusions

From the results in the Spring 89 series, one can draw
following conclusions:
1 Confining stress:
The change of confining stress can be measured. This provided us
with useful information in estimating the normal stress acting on
the shank during the penetration/pullout tests. Also, we found
that stresses remain locked into the medium after the pullout test.
2 Fracture Phenomena:
a) The fracture phenomena of all gypsum specimens consist of
radial cracking, crushing and chipping.
b} A crushed zone was observed in all resin specimens. Not all of
the resin specimens have radial cracks. Those specimens with a
lower curing agent ratio (test series 19) have a higher tendency to
have radial cracks than the specimens with a higher curing ratio.
Only 7% of resin specimens have a chipped zone.
3 Penetration resistance (slow penetration):
a) The penetration resistance drops when the radial cracks
initiate.
b) The increment of penetration resistance (force divided by the
embedded area) decreases as the penetration depth increases.
4 Pullout resistance:
The pullout resistance in slow penetration is 50% lower than that
in rapid penetration. For gypsum, the pullout resistance decreases
slightly as the joint spacing decreases. Resin test series 20 shows
a similar trend, while test series 19 only does so for spacings of
2 cm or less.
5 Stresses acting on the shank of the penetrator:
The order of magnitude of the normal stresses acting on the shank
of the penetrator is about 45 Mpa. The mean frictional shearing
resistance of the shank during pullout is 6.7 MPa. The mean
friction angle ¢ is thus about 8.5° which is low compared to the

friction angle of gypsum (about 33°).
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6. When comparing the Spring 89 tests to the corresponding
previous test series one notes that the gypsum tests produce
similar results in all respects (fracture penomena, crack depth,
penetration depth and pullout resistance). For resin, there is some
deviation even if the same resin mixtures are compared (notably
concerning pullout resistance) while other results are similar.
Lowering the curing agent ratio causes significant differences
(greater number of cracked specimens and deeper penetration
depth).
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Specimen | Malerial Joim Fasicner | Crack Crack Depth | Penciratiorn | Crushing | Chipping | Tesu

[ Spacingicm) | Shape Mumber ](cm) Depth iem) Series
5G01 gy¥psum intagi B k] 8.3 1.4 yes yes
3G02 - " " 3 %1 1.9 - -
$G03 - " " 1 9.6 1.0 - "
SG0a - " N 2 lor 4) 9.2 2.0 " b 17
5605 - " " ) 9.4 1.0 - N
SGOS " " * 2.0 2.0 " "
RGO - " i 4 7.3 2.2 " "
RGOZ " " " L) 9.1 13 " N
RGO3 " - " 4 i.] 1.4 . *
RGD4 - " . 4 6.4 2.1 " "
RGOS " - " 3 6.3 2.1 - -
RGOS - " N 4 f(or$ 4.2 1.2 " -
RG] b 1.0 - 4 4.0 2.2 " -
RG4l " - " 5 4.0 .1 - -
RG43 “ N " 4 pr more 4.0 2.1 . -
RGaa - - - 4 4.0 1.2 . "
RG4S " " " 5 4.0 1.2 - "
RG43 ; . . 4.0 2.2 .
RG2] - 1.0 - $ or mare 2.0 2.2 " -
RG22 " - " 4 or more 2.0 2.2 " -
RG23 - . - 4 2.0 1.1 b “ 18
RG24 N " " 4 .0 2.2 " -
RG2S v " " 4 2.0 2.2 " -
RG26 - - b L] 2.0 2.2 - -
RGi1 i 1.0 " 3 3.c 2.2 - "
RGI2 " " " 3 30 2.2 " -
RGi3 " " " L] 1.0 1.2 " -
RG14 - * . 4 N 32 " -
RG15 - " " 4 P 2.2 "
RG16 " - " 5 30 3.2 - -
RGS1 b 0.5 - 5 2.8 2.2 -
RG52 - " " 4 2.3 2.2 - -
RGS3 - " " & 4.0 2.2 - "
RG54 - " - [ 2.8 2.1 * -
ROiSS " - - 7 2.8 3.2 b "
RGS6 " . - 5 2.4 1.2 i "
RRLOM resinflly® intacl " 2 6.7 2.2 b -
RRLO2 - - - 2 4.8 2.1 " -
RELOI " " " 3 4. f 1.2 " -
RRL41 v 4.0 - 2 4.0 2.0 - no
RRL42 " - - 2 4.0 1.9 " yet
RRL4AT " - - 2 4.0 2.0 i no
RRLIL " 2.0 " 2 2.0 2.0 " e
RRLZ2 - b - no - 1.2 - no 19
RRL23 - - " 3 .0 1.9 M -
RRL1i " 1.0 " 2 1.0 1.7 " "
RRL1Z - " " 3 or more 1.0 1.3 "
RRL13 - " " k] 1.0 1.7 * *
RRLS1 - 0.5 - 2 i.0 1.6 " "
RRL52 - " " 2 1.0 1.6 - "
RRLI3 * - - no . 0.5 - N
RRHO} resin (H)** intaet " " - 1.3 - "
RRHG2 * - " " - 1.3 " B
RRHOI - - * b - 1.3 - "
RRH41 - 4.0 h - - 1.9 - -
RRH42 N b b - . 1.3 h -

| RRH4) - - r 2 4.0 1.2 ' .
RRHZ! * 2 " o - 1.2 . - pi]
RRH22 " - - " - 1.2 - "
RRHZ) " - " 2 2.0 2.0 - -
RRH11 " 1.0 . no - 1.5 " -
RRHI12 " " " 5 1.0 1.5 " -
RRH13 " bl - & 1.0 1.5 M *
RRHS1 " 0.5 - 2 0.3 1.6 - -
RRHS52 " - - 1 0.5 1.6 - -
RRHI : N " 5 0.5 1.6 "

*L indicaies raup curing agentfresin = 1720
**H indicates raiio curing agenvresin = /10

Mote:  The definitions of “"crushing™ and "chipping” are given in Einsiein end leng, 1983

Table 2.3 Summary of Fracture Phenomena, Test Series 17 to 20
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Peak Pullout | Mearn Pullout | Penetration | Peak Pulloyt | MeanPyliour | Test
Specimen No.| Force (KN) Force {KN} Depth (cm) Resisiance Resistance | Series
{MPa) {MPa)
SGO1 0.918 |.4 .
5G02 1.081 1.9 7.15 ]
:ggi 1.136 1.0650.076 2.0 2-93 s.82t02¢ | 17
1.093 2.0 72
$G03 1.064 (7.1%) 2.0 6.54 (3.3%)
$GU6 1.095 2.0 6.73
RGO 1.653 1.2 8.89
RGO2 2.472 2.3 12.51
:ggi g-?-“ 2.15420.673 2.1 Ig-gg 12.5242.78
357 2.1 14.
RGas 1.406 (31.2%) 2. 10.36 (22.7%)
RG06 2.495 2.3 13.42
RG41 2113 2.2 11.36
RG4Z 2.201 2.2 11.83
RG43 2.701 2.173%0.298 e 15.49 11.85%1.56
RO4 2.238 1.2 12.03
RG4S 1,910 (3.7%) 12 10.27 {16.3%)
RG46 1.477 2.2 10.0%
RG2! 2.187 2.2 11,76
RG22 2.43% 2.2 13.09
Rgﬂ 2.251 2.399%0.197 2.1 12.91 13.0640.98 18
RG24 2.29i 2.2 12.32
RGIS 2518 8.1%) 12 13.54 (7-3%)
RG26 2.714 3.1 14.5%
RG1L 2129 2.2 11.45
RGI2 1.545 22 8.1
RGI12 1.440 1.083%0.298 2.2 7.74 9.70%1.60
RG1¢ 2.036 2.2 10,93
RG1S 2.038 (21.5%) .2 10.96 (16.5%)
RGI6 1,630 1.2 8.76
RGS! 1.542 2.2 .29
RGS2 1.741 1.2 9.36
;gﬁ :i;; 1.663%0.166 %; ::g 8.94£0.90
RGSS 1,671 (10.0%) 37 £.99 (10.1%)
RGS6 1,793 2.2 9.64
RRLOI 1.449 2.2 6.02
RRLO2 0.467 1.147£0_350 21 2.68 s.e3tz78 [ 19
RRLD3 1.525 (5.1%) 2.2 8.20 (49.4%)
RRH®1 2.401 1.3 29.51 32.6414.058
RRHOD2 2.538 2.51240.100 1.3 31.19 (12.4%) 20
RRH03 2.596 (4.0%) 1.2 37.22
::1-‘” 1-223 1.005%0.811 2.0 ‘5-23 18.8714.68 "
L42 2.546 1.9 16,
RRL41 1.942 (27.0%) 2.0 24.22 (24.3%)
RRH4t .90 2.653%0.348 1.9 ;?.79 I7.8540.72 20
RRH42 2.674 1.3 2.86
RRH43 2.295 (13.1%) 1.2 32.91 (31.3%)
gu: 3-;:‘ 3.372+0.326 1.0 11-;; 95021181
L22 3.003 1.2 43,
RRL73 3.620 (9.7%) 1.9 23,96 (40.0%
RRH2) 2.270 2.913%1.008 1-% 32;: 30.64%4.95 20
RRHZ2 2.19¢ t. 4, 2
RRHZ3 4.072 (34.5%) 2.0 25.02 (16.2%)
:;‘t:; ;T;; 2.66630.488 1-'3" ;334 23.98%1.63 o
. 1. .83
RRLI3 2.923 (13.3%) L7 22.86 6.8%)
RRH1 2.011 2.16510.124 1.5 19.41 20.6941.19 20
RRHI2 2.189 1.8 20.92 %
RRH13 2275 (5.7%) 1.8 21.7% 5.8%)
gll-j; 1-142 1.264%0,846 [.6 :;;6 15.1614.68 5
1.18 1.6 21
RRLS3 0.460 (66.9%) 0.5 18.1% (30.0%)
ﬁi; :-;26 2.51310.410 1‘: 13;; 21.6213.53 20
.0dp 1. 17.
RRHS$3 2.772 {16.3%; 16 23.85 (16.3%
* Error made in aperating equipment
Table 2.4 Summary of Pullout Resistance, Test Series 17 to 20
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Voltage £g o Op T Friction
(mV) (10-%) | (MPa) (MPa) (MPa) Coefficient
W
5GO1 0.35 350 70 22.0 2.4 0.109
5G02 0.67 670 134 42.0 2.8 0.067
$GO3 0.52 520 104 32.6 3.2 0.098
SG04 0.30 300 60 18.8 3.8 0.202
8GOS 0.18 180 36 11.2 3.8 0.339
$G06 0.07 70 14 4.4 3.2 0.727
RGO1 -0.04 -40 -8 7.6
RGO2 0.78 780 156 49.0 9.6 0.196
RGO3 0.67 670 134 42.0 8.8 0.210
RGO4 0.67 670 134 42.0 8.0 0.190
RGO5 0.22 220 44 13.8 8.4 0.609
RGO6 0.56 560 112 35.2 9.6 0.273
RG4! 0.70 700 140 44.0
RG42 0.65 650 130 40.8 8.0 0.196
RG43 0.93 930 186 58.4 11.0 0.188
RG44 0.59 590 118 37.0 9.0 0.243
RG45 0.53 530 106 33.2 7.5 0.226
RG46 0.63 630 126 39.6 7.2 0.182
RG2! 0.48 480 96 30.2 7.7 0.255
RG22 0.47 470 94 29.4 8.5 0.289
RG23 -0.73 -730 -146 8.3
RG24 0.75 750 150 47.0 7.9 0.168
RG2S 1.21 1210 242 75.8 7.0 0.923
RG26 0.58 580 116 36.4 10.4 0.286
RG11 1.26 1260 252 79.0 6.9 0.087
RG12 0.59 590 118 37.0 4.9 0.132
RG13 0.74 740 148 46.4 5.3 D.114
RG14 0.81 8§10 162 50.8 5.6 0.110
RG15 1.08 1080 216 5.8
RG16 1.20 1200 240 75.2 5.6 0.074
RG5! 0.68 680 136 42.6 6.5 0.153
RG52 1.12 1120 224 70.2 4.5 0.064
RGS3 0.49 490 98 30.8
RG54 1.05 1050 210 65.8 6.0 0.091
RGSS 0.74 740 148 46.4
RGS6 0.13 130 26 8.2
Table 2.5 &g, 09, 04 and 1t after the Penetration Test, Test Series 17

to 20

—t
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Aluminum
Shells \ /Clamp
.‘ Alumin
' Hose Clamp \raum
: Screw
Specimen
Specimen
(a)
Strain
Hose Clemp Gage 1200
Strein @)
Gage
1200

{/2 Wheatstone Bridge

(b)

Figure 2.2 (a) Confinement with Aluminum Shells and Clamps
(b) Strain Gage Configuration
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Penetrator
S‘pccimen
A o
i
L P
A= UL (0t /g spz
—_— D S

Embedded Area = A; + A,

Figure 2.4 Definition and Calculation of Embedded Area

i
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Cross Head Moving Upward
[

]

v |

_—

l_r_l
Load Cell — e
oad Ce -?:‘I\Pm

Holding Frame §§/Mc:a! Bar

l

Clamps :- ~

Confincmjgi’n't’/? \\S

Shells pt??lmcn
Fixed Plate

Instron 4201 Testing Machine

Figure 2.6 Setup for Pullout Test
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ftrain Oage !

T

Jpecimen

\\iﬂtrain Gage 3 F— Box

Strain Jage 4 }/

IStrain Gaéé'é1_~8witch

7

Duntmy Gage!
R

¥heatetone
Bridge

——¥> Read outs

— w Voltmeter |

N

Power
Bupply

(a) Setup of Strain Measuring Devices

.. 1,
It

12¢ 0

®
1200 V

Aclive Oage

m Gage

(b) 1/2 Wheatstone Bridge

Figure 2.11 Measurement of Circumferential Strains
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Assume 2—dimensional analysis is applicable : L 0

12" ez T
Consider the balance of forces in the X direction :
joﬁanrcosﬂdEJ:(aat)sinﬁ (1)

The integration of eqn. (1) gives

anrsinﬁ-—agtsinﬁ (2)

Hence, from eqn. (2), o, can be obtained from o PR

%n | shank ~ —E‘_ a@l boundary (3)

The dimensions of t and r are :

t = 0.58 mm and r = 1.85 mm

Finally,

%3 | shank = 0-314 9| boundacy (4)

Figure 2.12 Relationship between Confining Stresses g and Normal
Stresses Acting on the Shank of the Penetrator Op
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CHAPTER 3
PREPARATION OF MAJOR TEST SERIES

3.1 Introduction

Validation testing of the penetration-pullout models requires
measurement of the penetration force-displacement and pullout
force-displacement history as well as knowledge of the stress state in
the medium and, if possible, at the penetrator/medium interface.
These measurements will be supplemented by observations of the
crack pattern and fractography. Based on the preceding test series
using a nail (fastener) gun and gypsum and resin models (see
Einstein et al., 1987; Einstein and Jeng, 1988) we decided to use a
similar setup but with the appropriate instrumentation added. The
instrumentation has to include an accelerometer on the penetrator
and devices for accurate measurement of stresses acting on the
model {(confining stresses and eventually also interface stresses).
The size of the penetrator and of the mode! was doubled compared to
the previous tests to make use of commercially available
accelerometers and particularly to make it possible to install sleeves
on the penetrator for measuring the interface stresses. As discussed
in Einstein and Jeng (1988), two of the three scale effects, the intact
size effect and the joint spacing effect can be adequately considered
with equipment and models of the chosen size. The third scale effect,
affecting joint shearing, is of minor importance in the penetration
problem. Nevertheless, it is possible to double the size of the
penetrator. and the model, the only limitation being the propellant
energy provided by the fastener gun. The model materials, in
particular, the gypsum, will remain the same as before, since it will
allow us to easily relate the results to those of the preceding tests
and to the many other tests on this material conducted by the MIT
rock mechanics group.

The design of the system required a substantial effort, in
particular, the selection of the dimensions as well as the fabrication
of the gun piston and of the penetrator/sleeve. The "accelerometer-
signal conditioner-data acquisition” system was configured, and to
some extent built by us; we also wrote the data acquisition program
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to optimize between collecting a large number of data and storing the
relevant data.

The system was successfully calibrated and tested. Details of the
design and of the calibration and shake down tests are given below.

"3.2 Description_of the Experimental Setup

The experimental setup consists of the penetrator, model
specimen, nail gun, accelerometer for the penetrator, signal
conditioner, data acquisition system and computer. The setup is
shown schematically in Fig. 3.1. When the trigger of the gun is
pulled, setting the penetrator in motion, the data acquisition system
is activated to read signals from the accelerometer attached to the
penetrator, Voltage signals from the accelerometer are amplified by
the signal conditioner to levels that can be read by the data
acquisition system. After the test, the readings stored in the data
acquisition system are transferred to the computer for reduction and
analysis.

3.2.1 Penetrator and Piston

The penetrator is attached to the piston of the gun and is
instrumented with an accelerometer. The details are shown in Fig.
3.2. The total mass is 293 grams. The penetrator is cone-tipped
(angle=16.40) of diameter 0.236" and made of high-carbon steel with
its tip heat-treated. Other shapes and sizes can be fabricated and
easily attached to the piston. It is planned to eventually add a sleeve
and cross strain gages (see Fig. 3.3) to the shaft of the penetrator to
measure axial and radial strains with which the stresses on the
penetrator can be determined.

3.2.2 Model Specimen

The model specimen is cylindrical, 4" in diameter and 4" high. It
is confined by a series of circular stainless steel clamps throughout
its height. Three strain gages are attached to each clamp to measure
circumferential strains, before and during the penetration test as

"

well as during the pullout test.
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3.2.3 Nail Gun
A Hilti DX-600N powder actuated nail gun is used to propel the
penetrator. The muzzle of the gun was removed such that the newly

designed piston-penetrator assembly can be inserted into the gun.

3.2.4 Accelerometer

The accelerometer used to determine the acceleration history of
the penetrator has the following specifications:

Endevco model 7225-01

Minimum range: 50,000g

Frequency response: 10 Hz to 10 kHz

Sensitivity: 0.10 mV/g
It is located in a ring connecting the penetrator and the piston of the
gun (see Fig. 3.2).

325 Signal Conditioner

An Endevco model 2775A signal conditioner was used to amplify
signals coming from the accelerator in millivolts to volts.

326 \cquisition S

The signals from the accelerometer as amplified by the signal
conditioner are read and recorded by a Hewlett-Packard 4882 high-
speed data acquisition system. The system can process 10° readings
per second and store up to 64,000 readings in its memory.

3.2.7 Computer

A HP personal computer is used to control the test. Also, it is used
to transfer the readings stored in the data acquisition system to an
IBM personal computer for reduction and analysis.

- h ipm n wn_ T
To make the test equipment work, several techmical problems
had to be overcome. The major effort was aimed at obtaining a
sufficient number of high quality data during the penetration
process.
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A series of preceding tests were conducted to get an idea on the
penetration duration, which was found to be in the range of
milliseconds (between 1 and 9 milliseconds). Hence, to get the
necessary resolution, a HP-4882 high speed data acquisition system
was chosen. The HP system is programmed and controlled by a HP
computer, At first, a program was developed to control the HP
system, to retrieve the data from the Random Access Memory (RAM)
of the HP system and to reduce the data. The HP system can take up
to 100,000 readings per second. However, to utilize the full capacity
of the HP system, it is necessary that it is not interrupted during the
data collection process (e.g., by communication of the computer with
data acquisition system). To meet such a requirement, all the data
need to be stored in the HP RAM, which can store up to 64,000
readings. This reduces the available measuring period to only 0.64
seconds. A trigger was then designed to start the HP system right
before the gun booster is activated to contain the penetration period
within the measuring window. After a series of trials and calibration,
we are able to place the penetration period in the first 0.15 seconds.

Another technical problem encountered is that the noise level is
too high to get a clear acceleration history. Through detailed checking
and understanding the data acquisition system and the signal
conditioner, we were able to solve this problem by jumping the
ground connections of the data acquisition system and the signal
conditioner.

After these efforts, the entire equipment was used to run three
shake down tests.

The Hilti 600N nail gun is designed to use caliber 0.27 boosters
with four power levels which are marked by green (the lightest),
yellow, red and purple (the heaviest) colors. In the first test, the
yellow booster (medium power) was used and the penetrator was
shot into a piece of wood. The reason for choosing wood for the first
test is that it is weaker and softer than gypsum, and thus a lower
deceleration is expected; this reduces the possibility of damaging the
accelerometer. The acceleration/deceleration history was recorded
during the entire penetration process, which includes propelling the
penetrator and the impact and arrest stages. An acceleration vs. time
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(a-t) curve is obtained. The integration of the a-t curve provides a
velocity vs. time (v-t) curve. A displacement vs. time (d-t) curve, in
turn, is obtained by integrating the v-t curve. These curves (a-t, v-t
and d-t) are shown in Figs. 3.4a, b, and c.

As shown in Fig. 3.4a, the duration of the entire penetration
process is about 6 milliseconds. The a-t curve shows the expected
acceleration/deceleration history with an acceleration caused by the
booster explosion, a deceleration upon impact and a final stop. The
irregularities (secondary waves) are caused by the vibration of the
penetrator-target system, which behaves like a mass-spring system
subjected to force pertubation during the penetration.

The total area enclosed by the a-t curve is not exactly equal to
zero which leads to a final velocity which is not exactly zero (at rest),
as shown in Fig. 3.4b. This deviation is relatively small but has to be
corrected through more work: 1) calibration and 2) the use of better
numerical methods to integrate the a-t and the v-t curve. The d-1
curve is shown in Fig. 3.4c. The last segment (AB) should be
horizontal, if the final velocity is zero.

In the first test, the maximum acceleration is about 5,000g and
the maximum deceleration is about 1,300 g, which are much lower
than the capacity of the accelerometer (50,000g in all directions). The
maximum acceleration/deceleration here is the value at the mid-
amplitude of the secondary waves in the a-t diagram.

In the second test, the yellow booster and Hydrocal White
gypsum were chosen. The test results (a-t, v-t and d-t curves) are
shown in Figs. 3.5a, b and ¢. As shown in Fig. 3.5 the maximum
acceleration is about 5,000g and the maximum deceleration is about
2,000g. Since the yellow boosters were used in both tests 1 and 2,
the same maximum accelerations were recorded. The maximum
deceleration in the second test is higher than that in the first test,
which agrees with the higher resistance of the gypsum as compared
to wood.

In the third test, the purple (the heaviest) booster and Hydrocal
B-11 (which has higher strength than Hydrocal White) were used.
The test results are shown in Figs. 3.6a, b and ¢. The maximum
acceleration is about 8,000g and the maximum deceleration is about
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4,000g, the increase of these values relative to the other tests being
caused by the heavier booster and stronger material, respectively.

As one could imply from a cursory inspection of the v-t curves
(Figs. 3.4b, 3.5b and 3.6b), the impact velocity in all tests is about 25
m/sec. However, as mentioned above, the final velocity is supposed
to be zero when the penetrator is arrested. If the final velocity is set
to zero (by shifting the v-t curve upward), the impact velocities are
approximately about 30, 30 and 40 m/sec respectively, which
reflects the effect that the stronger booster also produces the higher
impact velocity.
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CHAPTER 4
MODELLING OF PENETRATION INTO BRITTLE DISCONTINUA

During the first phase of the MIT work on PEA (Einstein et al.,
1987) we showed that no penetration or pullout models existed for
brittle discontinua. Shallow penetration into brittle continua is
satisfactorily modelled, but for deep penetration into brittle continua,
only approximations existed. For ductile media there are a number
of comprehensive numerical solutions which suffer, however, from
the fact that many parameters cannot be determined in standard
tests and that the sophistication is pushed too far compared to the
variability of ground conditions. Simpler models such as the cavity
expansion method cannot predict the entire stress field which is
needed for estimation of effects ahead of the penetrator tip and for
pullout resistance modelling. Also, a number of empirical approaches
for deep penetration into earthen or other materials exist, they are
based on "soil constants" or similar empirical factors which are not
easily relatable to standard material characteristics. The strain path
method, inspite of its simplification, seemed to be a promising tool
for penetration and pullout prediction because of its capability to
predict the entire stess field. At the time of the 1987 report, only
solutions for incompressible frictionless materials but no solution for
frictional and compressible materials existed, a situation that has
been changed in the meantime. At the conclusion of the 1987 work
(see Einstein et al. 1987), we decided to proceed as follows:

. Further develop the strain path method such that it can predict
the entire stress field in ductile non-frictional and frictional, -
incompressible and compressible materials.

. Gain an understanding of what goes on when a PEA penetrates
a brittle discontinuum and is pulled out from it.
. Combine the MIT jointed rock model with the strain path

method, using the understanding of PEA penetration into
brittle discontinuum, and construct a penetration-pullout
prediction model for brittle discontinua.
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The physical understanding of PEA penetration into brittle
discontinua was gained in the initial test series (see Einstein and
Jeng, 1988 and Chapter 2 of this report). Modelling, using the strain
path method, was started in 1989 and is reported in the following
chapters 5 and 6.

As stated above, the first step in developing strain path based
models is to complete the models for ductile materials. The original
model is for incompressible frictionless materials (clays) and was
developed by Baligh (1985 a,b). This model allows one to determine
the entire strain and stress field for deep penetration. In research
parallel to the PEA work, a strain path based model for
incompressible and compressible frictional materials was developed
by Elghaib (1989). This model is, however, restricted to stress
prediction for the centerline ahead of a penetrator in deep
penetration. Both the original and the newer version of the strain
path models do not consider any effects of the free surface.

Our approach in completing the ductile (strain path based)
penetration prediction models is thus to first develop solutions for
the entire stress field in frictional incompressible and compressible
materials. This will be followed by consideration of free surface
effects and, possibly, strain rate and inertia effects. Chapter 5
presents the work done so far on the predictions of the entire stress
field for frictional incompressible materials.

It seemed useful to pursue, in parallel to the work reported in
Chapter 5, direct depth prediction for rapid penetration using the
strain path method. Clearly the stress field work will eventually
result in prediction methods for penetration depth, also. The direct
modelling is simpler and can, therefore, be more quickly completed.
This allows us to compare penetration depth predictions based on the
strain path method with observed results. If the comparison is
satisfactory, it will indicate that the strain path method provides a
good basis for rapid penetration problems for which it was so far not
used. Naturally, the penetration depth prediction method is also
useful by itself. In Chapter 6 we report on work in this area which
has resulted in penetration depth prediction methods for

—
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incompressible non-frictional (clay) and incompressible frictional
(sand) materials.
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CHAPTER 5
MODELING THE STRESS FIELD

3.1 _Introduction

Knowledge of the stress field induced in the target material due

to penetration provides the following useful information:

1) It can be used to determine the elastic and plastic zones.

2) Stress contours map the stress distribution, which helps us to
understand the stress history of a given point in the medium during
the penetration process.

3) It provides the magnitude of the stresses acting on the shank of
the penetrator, which is needed in calculating the penetration and
pullout resistances.

4) Combined with the deformation field, the stress field can be used
to calculate the amount of energy transferred into the target material
at any given penetration depth. Thus, with the stress field,
penetration depth can be predicted for any given impact velocity (or
energy).

Stress field modeling is presented here in sequence from the
simple to the complex. We start with the one-dimensional stress
distributions in the region far behind the tip of the penetrator and
along the centerline beyond the penetrator tip. This is followed by
the model for the two-dimensional strain field induced by the so-
called "simple pile" which in turn is the basis for the two-
dimensional stress distribution model. The 1-D and 2-D stress
distributions will be developed for different types of materials (e.g.,
von Mises, extended von Mises and Mohr-Coulomb). What is
presented below is, however, subject to simplifications such as
absence of free surface and incompressibility of the medium.
Removal of these simplifications will be the subject of subsequent
research.

5.2 One-Dimensional Stress Fields

The stress distribution in the plane which is perpendicular to
the penetrator axis and far above the tip of the penetrator
approaches a one-dimensional distribution in the radial direction
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(The coordinate system is defined in Fig. 5.1.). Similarly, under the
tip of the penetrator, along the centerline of penetration, stresses are
one-dimensionally distributed along the axial direction. Essentially,
these one-dimensional stress distributions in the radial and axial
directions represent two special cases of the two dimensional stress
distribution. The results from the one-dimensional closed-form
analysis can be used to check the adequacy of the two-dimensional
stress distribution computed by the Strain Path Method.

2.1 Str istribution Far Behind the Tip of th netr
A, Strains
The strains in an incompressible isotropic medium induced by
an expanding cylindrical cavity can be expressed as (Baligh 1975)

2
1 R
er———z-ln(l—?-)
2
~lpa-R&
fom 27 (5.1)
e, =g, =0

where R is the radius of the cylindrical cavity and r is the radial
distance from the axis of the cavity.

If the point in the medium is far from the cavity, the strains
can be approximated by

_1R?
e, =3 2
. --LR
8 2 2 (5.2)
Ez=£n=0

B. Stress in the Elastic Zone

The stresses at a point in the medium in the elastic zone, where
Eq. 5.2 is applicable, can be expressed by using the linear elastic
constitutive law:
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G, = GD+G(%)2
R .2
G,=0,~G(T) (5.3)
c,=0,
where: O,: initial stress

G: shear modulus

C. Equilibrium
The equilibrium equation for the one-dimensional case (in the
radial direction) is:

(5.4)

The equilibrium equation is satisfied by the stresses in Eq. 5.3. Note
that these stresses have been determined using the approximate
strains of Eq. 5.2. If the exact stresses (based on the exact strains, Eq.
5.1, are used) have been used, the equilibrium condition would not
be satisfied. This indicates that in the elastic zone, the strains
generated from the deformation field of a fluid satisfy the kinematic
constraints but not the equilibrium equation. However, the
magnitude of strains in the elastic zone are small and so is the
difference between the exact strains and approximate strains. Hence,
the error is not significant.

D. Stresses in the Plastic Zone

In the plastic zone, the stresses are determined through the use
of the appropriate failure criterion for the material and additional
constraints as will be shown below:

-1 V i rial
The von Mises failure criterion is

2=k’ . (5.5)
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where: S: second invariant of the deviatoric stresses
k: material constant

To satisfy the equilibrium equation which includes two independent
variables (oy, 0g), in addition to Eq. 5.5, one more constraint is

required. Drucker and Prager (1952) assumed that

=1
cz"" 2(°r+09) (56)

within the plastic zone for an incompressible material.
Substituting Eq. 5.5 and 5.6 into Eq. 5.4, the equilibrium equation can
be solved and results in:

-2k
r (5.4b)

do,
dr
Integrating Eq. 5.4b, the stresses are:

rp
G, = 00+k[1+21n(-r—)]

T
6,= 0, +k[- 1+ 2In (7] (5.7)
r
0,=0y+2In()

where rp is the radius of the elastic-plastic boundary.

Rather than using Eq. 5.6 to obtain the stress distribution,
another approach is possible. For example, if the associated flow rule
is assumed, the increment of deviatoric stress tensor, dS;j, can be
expressed as

dSij = Cijk1P dek]

where: dek is the increment of the deviatoric strain tensor and
Cijki®P is the compliance tensor obtained from the flow

rule
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As will be shown later, dSij; can be directly substituted into the
equilibrium equation to solve for the stress field.

D-2? Frictional Material (Extended Von Mises with Cohesion Intercept)

The failure criterion of an extended von Mises material with a
cohesion intercept is

$’=% 2
=k (G +ccot ¢) (5.8)

where o is the octahedral stress, k is a material constant, ¢ is the
cohesion and ¢ is the frictional angle of the material.

To determine the stress distribution in the plastic zone, the
approach of Section D-1 can be applied. Substituting Eq. 5.8 and 5.6
into Eq. 5.4, the equilibrium equation is given by:

dcr 1 “‘“2?
e =?(1+k G, +ccot ¢) (5.9)
Integrating Eq. 5.9, the stresses are solved:
r 4
o,= (o,+ ccot ¢)(-r—"-) —¢ccot ¢
— T
- (1=k )
oe-(1+klcp+ccot¢)(r) ccot ¢ (5.10)
4
1 Tp
1=(mkcp+ccot Q)(T) -ccot ¢
where: 0P=(1+l—<)0°+ kceot ¢ is the radial stress at the elastic-

plastic boundary and
_ 2%
=17k

is a material-dependent constant.

D-3 Frictional Material (Mohr-Coulomb Criterion)
The failure criterion of a Mohr-Coulomb material is:
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_ 2ccos ¢ 1+ sin ¢
Ul_l-sin¢+1-—sin¢os3 (5.11)

where O, is the maximum principal stress (compressive stresses are
positive) and ©, is the minimum principal stress.

.The stress distribution in the elastic zone is characterized by the

following relationships:

G,= 0,
S,= G,
Substituting Eq. 5.6 and 5.11 into Eq. 5.4, the equilibrium equation
becomes:

_[ 2sin q> 2ccos¢o}
dl‘ 1+Sm¢ T 1+siné (5.12)

Integrating equation 5.12 results in the stress distributions in the
plastic zone of a Mohr-Coulomb material:

r A
G,.= (0,+ccot ¢)( l’) —ccot¢

_ 1-sin¢
G,= 1+sm¢(c + ccot ¢)( ) ccot (5.13)
1 Tp
Gz=m(op+ccot¢)(—f—) —ccot ¢

where ©, is the radial stress at elastic-plastic boundary and
G, =(1+ sin ¢)o, +ccos o
_{ 2sin ¢
“\O+sin ¢
The radial stresses, oy, for the different types of materials

considered are listed in Table 5.1. The normalized radial stress vs.
radial distance is shown in Fig. 5.2. As shown in Fig. 5.2, the radial
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stress increases significantly close to the shank of penetrator and
reaches a finite value along the shank of the penetrator.

5.2.2 Stress Distribution Along the Centerline beyond the Penetrator
Tip
A. Strains

Along the center line, the material beyond the penetrator tip is
subjected to triaxial compression; the strain components are

2

1 q_ RO

e =ghl-gs

1 R?

£ ==In(--
o= gl 4z’) (5.14a)

Rz

€z=-1n(l—4—zz)

or, according to the definitions by Baligh (1985a), they can be
expressed as:

2

R
EI=E‘=—ln(1—_4?
1
E.=—F(, -€,)=0
27 f3 e (5.14b)

The E's are parameters used in soil mechanics to indicate the
shearing modes under various types of loading conditions
(specifically, E; for the conventional triaxial test, E2 for the
pressuremeter test and Ej for the simple shear test; see also
Appendix C.1.2).

B. Stresses in the Elastic Zone
The stress field in the elastic zone can be obtained following
the same procedure as described in Section 5.2.1.
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€. Equilibrium

Along the centerline, beyond the tip of the penetrator, the
equilibrium equation reduces to (in terms of the deviatoric stresses,
Si; and the octahedral stress, ©):

dz dz r or (§.15a)

d_cz_,a{;is,_x_+&J
ez +/3V3d (5.15b)
where
Sl—c,-é(c,+oe)
522%("*"““) (5.15¢)
S=\/§cs,z

according to the definitions by Baligh (1985a). The §'s indicate the
shearing modes for various types of loading conditions corresponding
to the E's defined in Sec. 5.2.2.A.

in Plasti n
D-1 Von Mi Material
In the plastic zone, the term S3/r can be approximated by
(Elghaib, 1989):

53k(2J

i
r - 2
L2+ (%)

where zp is the distance to the elastic-plastic boundary along the

(5.16)

centerline.
In the plastic zone, Sy is related to the strength parameter k

s,=V3k (5.17)
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Since S; is not a function of z but a constant, the gradient dS;/dz in

Eq. 5.15b equals zero along the center line.
Using Eq. 5.16 and 5.17, Eq. 5.15b reduces to:

do ___ 43 &
Z

a4z 2 ,
2+ (z;) (5.18)

The integration of Eq. 5.18 yields the octahedral stress distribution
along the axial direction:

z
0=op+\/§m[—;—+-§-(7’)1 (5.19)

where op is the octahedral stress at the elastic-plastic boundary.

- rictipnal rial (Exten i
The failure criterion for the extended von Mises material is:

S=ko (5.20)

where k is a material constant.

k can be determined in terms of friction angle, ¢, measured in
triaxial compression, by equating the von Mises criterion- with the
Mohr-Coulomb failure criterion. This leads to the following
relationship:

3-sin¢ (5.21)

The von Mises criterion (which defines the shear strength of
the material) is based on a constant, k, which does not depend on the
octahedral stress. However, as shown in Eq. 5.20, for the extended
von Mises material, the strength is proportional to the octahedral
stress. If the constant k in the von Mises criterion (Eq. 5.5) is
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replaced by ko, the von Mises criterion becomes the extended von
Mises criterion. In other words, the extended von Mises criterion has
a "shear strength”, k, which depends on the octahedral stress state.
Therefore, the stress distribution for the extended von Mises
material can be solved by replacing the shear strength, k, in Eq. 5.18
by ko and combining Eq. 5.21 with Eq. 5.18. This results in the
equilibrium equation for the extended von Mises material:

do ~4sin ¢

& - 30+ s m( : 2}0
+ sin 2+(_i§_)
P

(5.22)

Integration of Eq. 5.22 yields the distribution of ¢ in the plastic zone:

zP
°=°i%+%(?01 (5.23)

where:
2sin ¢
X=1+simno

Figure 5.3 shows the octahedral stress distribution along the center
line for the extended von Mises material. As can be seen in Fig. 3.3,
the octahedral stress reaches a finite value at the tip of the simple
pile.

he Two-Dimensional Stre iel

The Strain Path Method (Baligh, 1985a) is used to obtain the
two-dimensional stress field. This is done because according to Baligh
(1985a):
1) No realistic and rational methods are available to study the
problems associated with deep penetration,
2) The SPM is an approximate analytic technique, which provides a
comprehensive approach to penetration problems in a realistic,
systematic and rational manner.
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rain h M A h

In the Strain Path Method, the deformation field induced in the
target material by the penetrator is simulated by the deformation
field induced in a fluid induced by a two-dimensional penetrator-
shaped cavity. For example, a single source in a uniform flow field
produces a penetrator-shaped cavity called the "simple pile” within
the uniform flow field as shown in Fig. 5.1. The SPM is based on the
assumption that, due to the severe kinematic constraints related to
the deep penetration problem, deformations and strains are
independent of the shearing resistance of the material. This
assumption is based on the observations of ground deformations
caused by deep penetration of rough objects (Baligh, 1975). Deep
penetration problems are therefore considered to be a strain-
controlled problem.

Using the Strain Path Method, the stress field is found as
follows:
1) Obtain the strain field.
2) Determine the stress field in the elastic zone (by using a linear
elastic, isotropic constitutive law).
3) Determine the deviatoric stress field in the plastic zone (by
assuming a failure criterion and a flow rule).
4) Determine the octahedral stress field in the plastic zone on the
basis of equilibrium.
5) Generate the stress field within the plastic zone by using the
results of steps 3 and 4. Combined with the results of step 2, the
entire stress field is obtained.

5372 The Two-Dimensional Strain Field and Equilibriom Equations
A._Strains

The shape of the penetrator considered here is a cylindrical
penetrator with a blunt tip, the so-called "simple pile” (see Appendix
C.1). A single (point) source in a uniform flow field (in an
incompressible, non-viscous fluid) produces a penetrator-shaped
cavity in the flow field as shown in Fig. 5.1. The closed form solutions
for the strain field induced by a simple pile are found to be (Teh
1987):
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e, =F,0)+(1- 3BYF,(9)
e.=~F,) - (1= 3BIF,(¢)
£y == 3F,0)

& ———{(2}3 -1) -q; +Bsm¢—-—sm2¢ ~2B(B% - 1)tan~ ‘{(B” 3ot g-]}
(5.24)
where
- o coscb]
F (9)= 3(1+cos¢{zi i

F,(0) = ln[l + -é—(ro) (L + cos ¢)]

2

T
B=2(—E) +1

Equation 5.24 describes the strains in a streamline with an
initial distance r, from the centerline as a function of ¢. The
geometries of the simple pile and the streamline are defined in Fig.
5.1. As shown in Eq. 5.24 the volumetric strain is always zero in the
entire field due to the constraint that the material is incompressible.
Hence, the strain components shown in Eq. 5.24 are also the
deviatoric strain components (er, €z, €9, €rz). The strains approach
infinity at the tip and shank of the penetrator. '

For a point which is far from the simple pile, the two-
dimensional strain field can be approximated by (Baligh, 1983a):

N

(1 +cos ¢ + cos ¢sin 2 ¢)

m

Il
Nk
S

( — cos sin 2¢)

™
||
—— N
le
L |

i

\._.._./u\._/

(=1=-cos¢)

m
@
il

(5.25)

m
n
I
~
Ml v

)(-Sm b)

T

~

where R: radius of simple pile
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r: radial distance of a point from the center line.

B. Equilibrium

The equilibrium equation in the axisymmetric case can be
expressed in terms of the octahedral stress (o) and the deviatoric
stresses (S, S;, S¢ and Sy;), which is convenient for the subsequent
steps in the analysis.

-a-g'-_ as asm Sr-sa

T

or  or o0z T

30‘__ asrz aSrz _S_rz

Pz "or oz T (5.26)
rminati T

A. Stresses in the Elastic Zone

In the elastic zone, the stress at any point can be determined
from the strains and the elastic constitutive relation. For example,
for a linear elastic, isotropic material, the stresses can be expressed
as:

;= hend; + e, (5.27a)
where:

ojj: stress tensor (i, j= 1, 2 and 3)

€ij, Ekk: Strain tensor, volumetric strain

A, u: Lame's constants.

In the axisymmetric case, the stresses can be expressed in the
following form:

o, l-v v v 0 E,
o, |_ E v 1-v v 0 €,
g,| d+wi-2v| v v 1-v 0 leg (5.27b)
c 0 0 0 1-2v]e,

where E is the Young's modulus and v is the Poisson's ratio.
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B._S 0 the Plastic Z
B-1 Von Mises Material

The failure criterion for the von Mises material is

§2=k2 (5.5)

where S$2: second invariant of the deviatoric stress.

To solve the equilibrium equation (5.26) which has four independent
variables (Sr, Sz, Sg, Srz), three more constraints or assumptions in
addition to Eq. 5.5 are required. A simpler approach to obtain the
two-dimensional stress field is to use the plastic flow rule. For
instance, the incremental stress-strain relationship derived by
assuming an associated flow rule for a von Mises material is given by
(Desai and Siriwardane, 1984):

S.de

do. =(2Gde, + Kdl de )~ G———S8§ .
ij ( i i 11) k'l i (5.28&)

where: G: shear modulus
K: bulk modulus
dejj: increments of the deviatoric strain tensor
Sjj: the deviatoric stress tensor
k: material constant of the von Mises material
dIy: increment of volumetric strain

Equation 5.28a describes the increments of stresses as a function of a
given set of strain increments. Since the volumetric strain equals
zero anywhere within the deformed field, as mentioned in Section
5.3.2.A, Eq. 5.28a can be solved as

ds, 2 000 S5, S5 S.5, 25.5,]{de,
ds, | _Jio 200 *Lg SeS.  SeSe  SeS:  256S:. ||| dee (5.28b)
ds, 0 0 2 0| k?[SS, SSs 85,5, 255.|f|de,
dsrz 0 0 0 2 srzsr S::Se S::Sz Zszzsu de:z



78

The above equation yields the increments of the deviatoric stresses
when the deviatoric strains are given by Eq. 5.24. The deviatoric
stress field is obtained by integrating Eq. 5.28b; this is followed by
the determination of the deviatoric stress gradients. They, in turn,
are substituted into Eq. 5.26 to solve for the gradients of the
octahedral stress. Using Eq. 5.26, the increments of the octahedral
stress, do, can be expressed in terms of the -gradients of the

deviatoric stresses:

_ 9o Jels}
do= al,dr+ azdz (5.293)
S, oS, S,-S S, 9S8, S.
S E TG T

As shown in Eq. 5.29a, the octahedral stress is determined by the
gradients of the deviatoric stresses. The deviatoric stresses
according to Eq. 5.28b are determined by the increments of strains
corresponding to the strain history (or strain path along a
streamline). It is therefore necessary to integrate the deviatoric
stresses along the streamline.

Once the deviatoric stress field is obtained, the octahedral
stress can be determined from Eq. 5.29a. For example, the
increments of the octahedral stress along a streamline can be
expressed as follows by using Eq. 5.28b and 5.29a :

G G dr S Se dr
do=(5S.A - 2Gde,)+ € 3S.A ~2Gde )y - (=7 )ggd0
%549

G iz G S
+ (S5 A -2Gde ) + (25,A - 2Gde,) - —2(
k? dr g’ T do (5.29b)

where:
A=S,de,+5de + S,de, + 258,,de,,

dr _(gz_)-l_ sin *¢
dz ar cos $(2 + sin ¢) + 4(21511)2 +2

which is the gradient of the streamline
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The stress field can be derived by combining Eq. 5.28b and 5.29b.
The stress field for the von Mises material is shown in Fig. 5.4
(Baligh 1985a).

- ictional
The strength of the von Mises material is not a function of the
octahedral stress. However, most geomaterials are c¢-¢ materials, i.e.,
the strength of the ground is a function of the octahedral stress. Let

us consider a simple case, where S=k=ko, as a starting point. k is a
material constant which represents the internal friction of the
material. As mentioned in the previous sections, the stress field of
the frictional material can be determined by making the
constant k in the von Mises criterion dependent on the octahedral
stress in the deformed field.

A forward numerical scheme is developed to solve the stress
field for the frictional material:

1) At the elastic-plastic boundary, let the imittal k be equal to ko 0"

2) Compute the increments of the deviatoric strains for two points on
a streamline.

3) Use Eq. 5.28b to get the increments of the deviatoric stresses.

4) Compute the spatial gradients of the deviatoric stresses.

5) Substitute the results from step 4 into Eq. 5.29a to obtain the
increments of the octahedral stress at the next point.

6) Compute the octahedral stress at the next point.

7) Update the k value ( Let k = k(o +do)).

8) Repeat steps 2 to 7 to get the entire stress field.

3.4  Further Research

The following issues have to be addressed in the next research
phase:
1) Determine the stress field with models which can represent the
mechanical properties of the ground better. An example is the
extended von Mises criterion discussed above,
2) Examine the penetrator shape effect.
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3) Obtain the penetration resistance from the stress field and predict
the penetration depth with a given initial input energy (or impact
energy). The penetration resistance can be evaluated by integrating
the stresses acting on the surface of the penetrator at any given
penetration depth. The penetration depth can also be determined by
equating the input energy and the energy required to achieve a
given penetration depth (this a rigorous solution; a simple solution
will be presented in Chapter 6).

4) Obtain the pullout resistance using the stress field and interface
shearing characteristics.

5) Introduce a free surface in the SPM approach. One of the
limitations of SPM is that it assumes that penetration depth is great
(approaching infinity) and that the effect of the free surface is
negligible. To map the PEA problem better, a free surface can be
generated by the superposition of a point source and its virtual
image (see Sagaseta, 1987).

6) Extend the SPM approach to compressible materials in the two-
dimensional case. Elghaib (1989) has already developed a SPM
solution for the one-dimensional stress distribution along the
centerline for a compressible, frictional material.

7) Most important will be the inclusion of the constitutive model for
discontinuous brittle materials which realistically represents rock
mass behavior.
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| Streamline

A

Figure 5.1. The Definition of the Coordinate System and Geometry of
the Simple Pile and Swream Line (Baligh, 1985)
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Figure 5.3. The Distribution of the Octahedral Stress along the

Centerline beyond the Penetrator Tip for a Frictional Material

(Elghaib, 1989)
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CHAPTER 6
MODELING PENETRATION DEPTH

6.1 Introduction

Here we develop a simple analytical model for predicting

"impact penetration depth into clays and sands. This is based on the

results of previous work on point resistance of the simple pile using
the Strain Path Method (SPM). As will be seen, this approach
requires only a few parameters which can be easily determined.
Also, expressions to include friction and strain rate will be
formulated in a similarly simple manner. The results obtained with
the simple Strain Path-based approach will be compared to data
from impact penetration tests, If the comparison shows satisfactory
correspondence, it will not only tell us that we have a reasonable and
simple approach to predict penetration depth but it will also indicate
that the basic principles of the Strain Path Method are adequate to
model the penetration process.

The total depth of penetration in an impact penetration
problem may be solved by integrating the equation of motion of the
penetrator:

F=ma=mv

dz (6.1)

where: F = net force acting on the penetrator
= mass of the penetrator
acceleration of the penetrator
velocity of the penetrator

= depth of penetration

N < & 3
|

Thus, all the driving and resisting forces on the penetrator have to be
identified and expressed in terms of the relevant parameters of the
penetration problem. Forces resisting penetration include: bearing
resistance of the ground (equal to the point resistance of the
penetrator), skin friction between the penetrator surface and the
ground, and inertial resistance of the ground. In the impact
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penetration problem, the magnitude of the weight of the penetrator
is small compared to the resisting forces. The driving force due to
the weight of the penetrator may thus be neglected for practical
purposes.

$2 Point Resi  the Simole Pile in Cl

Analytical expressions for the point resistance of the simple
pile can be determined in two ways, by 1) energy considerations and
2) centerline analysis.

Baligh (1985) has applied the Strain Path Method to study
deep, steady, undrained penetration in isotropic, homogeneous,
incompressible cohesive ground (fully saturated clays). He used an
elastic-perfectly plastic (bilinear) behavior obeying the von Mises
yield criterion for the simple pile, a blunt indenter (for a detailed
description of the Strain Path Method and the simple pile, see
Appendix C.1). He derived an analytical expression for the point
resistance qsp of the simple pile from energy considerations. qsp is
defined as the upper bound force required to push the simple pile
divided by its cross-sectional area, xR2, R being the radius of the
simple pile. In other words, gsp is derived by assuming that the
work done in pushing the pile is equal to the work done in
overcoming the soil resistance due to initial stress, plastic flow and
elasticity outside the plastic domain. Baligh gives an analytical
expression of the form (Appendix C.2):

qu = Nsp k + To (6.2)

where Njp = simple pile point resistance factor (dimensionless)
from energy considerations which depends on the
octahedral yield strain Ey of the ground

N, =1+ [2[n(3)-2-amE ]

» 4 4 (6.3)
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1
E, = — _
g '\/EY’ (Yy = engineering yield strain in the direct

simple shear (DSS) test)

1
—F¢&
V27 (ey = axial yield strain in the triaxial
compression (TC) test)

k = a measure of the undrained shear strength s, of the
soil
= $4(DSS) = sy from DSS test
= 755,(TC) (su(TC) = su from TC test)

Go = initial isotropic stress in the ground

Fig. 6.1 shows Ngp values as a function of Ey for the bilinear model
for 0.1%<Ey<10%. The values of Nsp are in the range 4-12. The figure
indicates that for soils with larger yield strain, the point resistance
factor is smaller. This is so because we get the same strain field for
any incompressible ground. If the yield strain is larger then the
plastic zone is smaller. Thus, less energy is required to deform the
soil plastically.

Elghaib (1989) proposed a simplified method for evaluating the
condition at the tip of the simple pile by considering that in the
region ahead of the simple pile (see also Appendix C.1):

1. The dominant mode of shearing is triaxial compression.

2. The strain paths for elements approaching the pile tip involve
monotonically changing strain rate and strain components.

3. Close to the pile centerline, there are only small gradients of the
field variables in the radial direction; hence, realistic solutions
can be obtained by considering only conditions of vertical
equilibrium.

The above simplifications allow one to obtain closed-form solutions

along the centerline for the simple pile geometry.

The point resistance qc, assumed to be equal to the vertical
stress at the tip of the simple pile, is given by (Appendix C.3)
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Jc = Nc 5u(TC) + Gp (6.4)

where N; = point resistance factor from (one-dimensional)
centerline analysis

I 1.21). 4
N=—21n(3 + 3E,)+ : ©.5)

Fig. 6.2 shows N¢ as a function of Ey for the bilinear model for
0.1% < Ey < 10%. The values of N¢ are in the range 5-15. These are in
reasonable agreement with empirical cone resistance factors
generally of a magnitude of 10-20.
Elghaib, comparing N¢ with Ngp (Fig. 6.1) further noted that:
1. Predictions of tip resistance factors Ngp and N are qualitatively
the same; for a given input parameter Ey, N¢ is larger than Ngp
by approximately 20%.
2. Predictions of point resistance qc are approximately equal to
those of qsp. For exampie, for the bilinear model with Ey = 2.0%

Ne =84 gq.,-o0,= Ng-{ikﬂj k

Nsp =74 qsp ~-Cgp = Nsp k =72k

The quantitative similarity of predicted point resistance using the
centerline solution with the energy-based solution for the entire field
suggests that the centerline solution can be used for describing the
point resistance of the simple pile and for interpreting cone
penetration tests. It should be noted however that this comparison
was made for the case of simple, isotropic, elastic-perfectly plastic
ground and an isotropic inmitial state of stress.

Poin istan f imple Pile in
Elghaib (1989) also developed a simple expression for point
resistance based on centerline analysis of the simple pile for steady,
deep, drained penetration in sands. He assumed that the sand is
incompressible so that the strain field is identical to that for

-
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undrained penetration in clay (he also developed a compressible
solution which we are going to use later). The only difference is the
constitutive model for the ground. For drained penetration, no
excess pore pressure is generated in the ground and the behavior is
modeled in terms of effective stresses. The ground is also described
using a bilinear elastic-perfectly plastic model but failure (or yield)
is described by an extended von Mises criterion expressed in terms
of the friction angle ¢' of the soil measured in triaxial compression,
The point resistance qc', assumed to be equal to the vertical
stress at the tip of the simple pile, is given by (see Appendix C.4)

qc= No 6o’ (6.6)

where Ng = point resistance factor from centerline analysis which
depends on the axial yield strain ey and the friction

angle ¢' of the soil

N 31 +sin¢')ry 21 2sin¢’
c= 3_sin¢ (3+3€y)1+sin¢' (6.7)
Oo = initial isotropic effective stress in the soil

Figures 6.3 and 6.4 show Ng as a function of ¢' and ey respectively,
indicating that:

1. For a given friction angle ¢', the point resistance Ng decreases
with increasing axial yield strain ey (or decreasing size of the
plastic zone)

2. The point resistance Ng can vary by a factor of 10 at a given
friction angle ¢' (Fig. 6.4) depending on the axial yield strain &y.

3. For a given yield strain ey, the point resistance Ng increases
with increasing friction angle ¢'; No changes by a factor of 4
when ¢' varies in the range of interest (30° to 40°).

Elghaib has shown that his solution is bounded by Vesic's
(1972) spherical cavity expansion, and Vesic's (1977) hybrid
spherical cavity expansion with plastic bearing capacity failure,
models. Elghaib's solution is approximately equal to the hybrid
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model at low friction angles ¢' (Fig. 6.5 for the case ey = 0.7%). It has
been shown that Vesic's basic cavity expansion solution
underpredicts actual bearing capacity resistance whereas the hybrid
solution gives values substantially closer to Belotti's experimental
data on Ticino sand (Einstein et al 1987).

5.4 P ion Depth Predicti in Cl
6.4.1 Basic Mode] (Point Resistance Only)

So far we have shown that the point resistance for the simple
pile for undrained penetration in clays can be determined for deep,
constant-velocity penetration and that it depends only on ground
properties such as shear strength and yield strain. As a first
approximation, let us assume that 1) the point resistance is the major
contributor to the resistance of the penetrator, 2} the same
expression for point resistance applies to the entire impact
penetration process, i.e., starting at impact velocity at the free
surface of the ground until the penetrator comes to rest and 3) the
simple pile geometry is adequate to represent general penetrator tip
shapes.

Therefore, using the point resistance based on the entire strain
field using energy considerations (Eq. 6.2) and substituting in the
equation of motion (Eq. 6.1), we have

- [N,k +0)dz = 2 [vav
° "R, (6.8)

where: oy =0p' +Tw Z
00' =1[3 (1+2K0) Tb Zz

o =Y-Yw
Su =SOvo’
0\;0‘7—7[)2

Yw, unit weight of water; Ko, coefficient of lateral stress at
rest; Yp, buoyant unit weight of the clay; ¥, wet unit weight
of the clay; S, ratio of undrained shear strength to initial

ot
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effective vertical stress Gvgo'; Vo, impact velocity of the
penetrator,

Integrating Eq. 6.8 we obtain in terms of the kinetic energy K.E of the
penetrator at impact, the penetration depth:

. ‘/ 2(KE.)
{[N,s+50+2K )]y, +7.}A (6.9)

1
where K.E. = 5‘“"02* A=cross-sectional area of the penetrator.

A similar expression can be obtained using the alternative expression
for point resistance based on centerline analysis. The above equation
indicates that the total depth of penetration z: a) increases with
increasing K.E. (i.e., increasing mass and increasing impact velocity of
the penetrator), and b) decreases with increasing Njsp (i.e., decreasing
€y), increasing unit weight and increasing shear strength of the soil
and increasing cross-sectional area of the penetrator.

The validity of the above approach was evaluated by
predicting depths in free-fall impact model tests on partially
saturated compacted kaolin clay by Murff & Coyle (1973) with a 7.26
b, 1.56 " dia. short ogive (1.25 caliber) at velocities of 18-116 ft/sec.
Since a constant value for the undrained shear strength (4.1 psi from
triaxial compression tests) was given by Murff & Coyle, Eq. 6.9 with
constant k becomes

2
N, N, kY 2(K.E.)
z"?*j(?)* R

Nsp values for the prediction of penetration depths for clay
were obtained by assuming a typical range of axial yield strain
values, say 0.1 to 10%, in the absence of information on this. The
predictions are plotted in Fig. 6.6 against the kinetic energy of the
penetrator at impact: (a) depth of penetration and (b) ratio of
predicted to actual depth, for the assumed limits of 0.1 and 10% for

(6.10)



94

the axial yield strain of the clay. One will note that we overpredict
penetration depth with increasing discrepancy as kinetic energy
increases (overprediction of 30-300% at the lowest velocity to 590-
1300% at the highest velocity). There are three classes of possible
reasons for this. First, there are possible inaccuracies in the
‘experimental data (measurement of soil properties especially the
undrained shear strength and other parameters in the problem). It
should be stressed that the model can only be verified by using
available data and verifications conducted are also subject to the
limitations of the experiment. Second, test conditions deviate from
the basic assumptions of the model (e.g., incompressibility vs.

compressibility of partially saturated clay, isotropic state of stress vs.
anisotropic state of stress in compacted clay and absence of interface
friction vs. the presence of interface friction). Third, there are factors

which may be important but not included in the model (e.g., strain
rate effects, inertial resistance and tip shape effects).

6.4.2 Effect of Strain Rate

It has been observed that decreasing the time to failure results

in an increase in the undrained shear strength of clays. Lacasse
(1979) in an extensive literature review reports that the increase in

undrained shear strength of clay varies with the logarithm of time to

failure. Increase in the undrained shear strength ranges from 3 to
20% per log cycle of time for time to failure of 1-140 min in triaxial
tests. The strain rate effect for clays increases with higher plasticity
and higher overconsolidation ratio OCR.

The undrained shear strength s, of a clay sheared at a rate of
€, in terms of its strength (sy)o at some reference rate of straining

€,, can be expressed as

5“=(s“’n[l+al°g”(_é%)] (6.11)

where o is the strain rate factor, the increase in strength per log
cycle of time to failure.

=%
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Using the expression for the rate of axial straining at the
centerline for the simple pile (Eq. 13, Appendix C), the rate of
straining at the tip is given by

€2 =R (6.12)

where U is the velocity of penetration and R the radius of the simple
pile. Thus, Eq. 6.11 can be expressed as

Three values of a (0.10, 0.15, 0.20) based on the results of
Lacasse's study were used to incorporate rate effects in our
predictions. We used modified s, values based on the impact velocity
of the penetrator and the standard shearing rate in a triaxial test
(=0.5% /hr). The corrected plots are shown in Fig. 6.7, 6.8, and 6.9 for
o values of 0.10, 0.15, and 0.20, respectively. The reader will note
that the predictions have been brought closer to the actually
observed depths with the improvement increasing with larger o
values. The penetration depths are still overpredicted, and this, to a
larger extent at high kinetic energies.

6.4.3 Effect of Skin Friction

The simple pile solution assumes that the penetrator is smooth
which means that there is no interface friction between the
penetrator and the ground. However, if the penetrator is rough and is
in full contact with the ground during the penetration process, then
sidewall resistance will be developed.

Theoretically, the unit skin friction may be assumed to consist
of two components: adhesion a, which is independent of the normal
stress qg acting on the shaft of the penetrator and friction, which
should be proportional to the normal stress (Vesic 1977). This may
be expressed as
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f,=a+q,tand (6.14)

where tan 3 represents the coefficient of friction between the ground
and the shaft of the penetrator.

In the absence of information on ground-penetrator properties
a and & and an analytical expression for the distribution of qs during
penetration (the two-dimensional stress field solution is being
developed at present), an estimate can be generated by using
available empirical data on pile capacity. For clays, it was found that
the skin friction can be expressed as a factor of the undrained shear
strength sy (Tomlinson 1957)

f,=Ps, (6.15)

where B is a coefficient varying from 0.2 to 1.5 depending on the pile
type and soil conditions. It has been suggested that for soft to firm
clays (sy < 0.5 tsf), p should be 1.0. Therefore, the additional resisting
force Fg(z) due to skin friction acting on the penetrator at any depth z
is given by

F(z)=2nmRz- s, (6.16)

The above expression was used to incorporate skin friction in our
case study based on the experimental data by Murff & Coyle, and it
will be noted that the predictions have been brought down
considerably even at high K.E.'s (Fig. 6.10). This is due to the fact that
the depth of penetration is larger at higher velocities; consequently,
relatively larger corrections have been applied to these data points.
It is interesting to note that the Strain Path Method with its
assumption of no interface friction has been successfully applied to
clays of low overconsolidation ratio (OCR = 1-4) in cone penetration
tests (Baligh 1985; Elghaib 1989) and pile installation problems
(Whittle 1987). However, in our case study, we have a compacted
clay whose behavior is similar to that of an overconsolidated clay.
Application of the skin friction correction modified our predictions
such that the overprediction is consistently low even at high kinetic
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energies, a result which was not achieved when only the strain rate
effect correction was applied. This may be an indication that skin
friction is important for highly overconsolidated clays.

Dayal and Allen (1975) observed that interface friction is also
strain-rate dependent based on sleeve friction measurements from
static cone penetration tests on pottery clay. They found that skin
friction increases with the logarithm of velocity of penetration by at
least 17% per log cycle of velocity in the range of 0.0044-0.456 ft/sec
and at least 38% per log cycle beyond 0.456 fi/sec to 2.662 ft/sec.

We decided therefore to apply both the strain rate and the skin
friction correction simultaneously, As Fig. 6.11 and 6.12 show, these
corrected predictions lie within the range of observed data (Murff &
Coyle) for the range of ey values assumed and for a values of 0.10

and 0.15, respectively.

5.5 P on Depth Predictions in Sand
$.5.1 Basic Model (Point Resi Only'

An approach similar to that in clays can be used to express
penetration depth in sands. The point resistance from centerline
analysis (Eq. 6.6), the only available closed-form expression for point
resistance, is used. Substituting this result in the equation of motion
(Eq. 6.1) we have

z 0
'L(N"o")dz R -[dz (6.17)

where o' is the isotropic effective stress in the soil, as defined for
clays. Integrating Eq. 6.14, we obtain in terms of the K.E. of the
penetrator at impact the penetration depth

_\/ 2(KE.)
£ U NJO+2K)y, + 1.]A (6.18)

Therefore, as in clays, the penetration depth z: a) increases with
increasing K.E. of the penetrator at impact and b) decreases with
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increasing Ng (i.e., increasing angle of friction ¢' and increasing axial
yield strain ey) and increasing cross-sectional area A of the
penetrator.

Data from impact penetration tests by Wang (1971) on loose
and dense Ottawa sand were used to evaluate the model. Wang used
a cylindrical flat-ended penetrator with weights of 0.088 to 2.93 1b,

3 .1
impact velocities of 10 to 25 ft/sec and diameters of ,, 1, and 2".

Ground properties such as friction angle ¢' and axial yield strain ey
were taken from data on Ottawa sand collected by Elghaib (1989)
(loose, ¢'=35.99, ey=1.15%; dense, $'=430, gy=0.107%). It will be noted
that the range of parameters studied is such that the actual
penetration depths into sand are relatively shallow especially for
dense sand (Fig. 6.13) as compared to the diameters of penetrator of

3 .1
4» 13, and 2" used. The results of the predictions are shown in Fig.

6.13 and 6.14 for dense and loose sands, respectively. The
predictions are plotted against the ratio of the kinetic energy K.E. of
the penetrator at impact to its cross-sectional area A. Fig. 6.13(a),
6.14(a) show penetration depth and Fig. 6.13(b), 6.14(b), the ratio of
predicted to actual depth. It will be noted that for the loose sand,
penetration depth is overpredicted on the average by 27% with
larger overpredictions at low K.E./A ratios. On the other hand, for the
dense sand, penetration depth is underpredicted on the average by
11% with larger underpredictions at high K.E./A's.

Again, the discrepancy between the predicted and actual
values may be attributed to three classes of possible reasons as cited
in the predictions for clay: possible inaccuracies in the experimental
data of the case study, deviation of test conditions from basic
assumptions of the model (e.g., incompressibility vs. compressibility
of real sand, deep penetration vs. shallow penetration and absence of
friction vs. presence of friction) and non-inclusion in the model of
effects such as those of high strain rate, of inertia of the target
material and of tip shape.
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6.5.2 Effect of Strain Rate

The earliest tests on the effect of time of loading on dry sands
were performed by Casagrande and Shannon (1949) on dense
Manchester sand. They observed a 10% increase in strength from a
10-min static, to a 0.02-sec rapid loading, triaxial compression test
(equivalent to 2.2% increase in strength per log cycle of time of
loading). Whitman & Healy (1962) found only a slight variation in
friction angle (likely to be less than 5%, no more than 10%) based on
triaxial compression tests on dry loose and dense Ottawa sand from a
rate of loading of 0.012 in/sec to 18 in/sec. Schimming, Hass & Saxe
(1966) performed dynamic direct simple shear tests on dry loose and
dense ASTM C-190 sand with time to failure of 1-5 milliseconds and
compared them with rapid static tests with time to failure of 30-50
sec. They concluded that dynamic effects are minimal. Dayal and
Allen (1975) performed constant-velocity cone penetration tests on
dry silica-70 loose and dense sand at velocities of 0.0044-2.662
fi/fsec. They observed no appreciable difference in either cone or
friction sleeve resistance. Based on the above tests, we can conclude
that there is no significant strain rate effect on the strength of dry
sands.

In undrained loading of saturated sands, the strain rate effect
may be important as Seed and Lundgren (1954) report an increase of
15-20% in strength for both loose and dense Sacramento sand from
slow (6 in/min) to rapid (40 in/min) transient triaxial compression
tests. On the other hand, Whitman & Healy (1962) report an increase
by as much as 40% in the strength of dense Ottawa sands as the
displacement rate increased from 0.08 in/sec to 18 in/sec in triaxial
compression tests, but they observed no change in strength on loose
Ottawa sand.

In our case study we are using data from Wang (1971), which
come from tests on dry sand. In such cases, corrections for strain rate
effects are not needed.

5.5.3 Eff ¢ Skin Fricti

The theoretical considerations on skin friction for sands are
similar to those for clays. In the absence of information needed for a
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theoretical analysis, skin friction in sands may then be estimated by
assuming that the coefficient of friction between the soil and the
penetrator shaft is tan¢' and that at least lateral ground conditions at
rest exist (therefore, the coefficient of lateral stress may be
approximated by 1-sin¢’). Thus, assuming skin friction f5 to be
‘composed of a friction component only (adhesion is negligible), then
fs is given by

f, =(1-sin ¢)tan ¢'c,,' (6.19)

and the additional resisting force due to skin friction is thus given by

F,(z) = 2%R(1 —sin ¢")tan ¢'y z* (6.20)

Integration of the equation of motion with skin friction included
results in a cubic equation which is solved numerically.

Incorporating skin friction means that an additional force
resists penetration. Thus, the original predictions for the loose sand
improved considerably (the average overprediction was lowered by
9%) (Fig. 6.15) while those for the dense sand were unchanged. This
is so because for the dense sand, the point resistance is high
(Ng=402) and the contact area is small with penetration being
shallow; the relative change due to skin friction is therefore minimal.
For the loose sand, however, the point resistance is lower (Ng=39.8)
and the contact area is larger as penetration is relatively deep; thus,
interface friction becomes significant.

6 Effect of Inerti rface, Ti

The inertia of the ground mass is believed to become important
in the penetration process as the velocity of the penetrator increases.
As the velocity of the penetrator increases, a considerable amount of
energy becomes available to displace and impart velocity of
considerable magnitude to the target material around the ground-
penetrator interface. This can occur in both the vertical and lateral
(radial) directions. The relative velocity of penetration at which
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resistance due to inertia of the ground mass becomes significant still
has to be investigated.

There are a number of ways in which the effect of inertia of
the ground mass can be considered.

Hill (1980) in his cavitation model proposed that the inertial
effect causes a cavity larger than the penetrator to be formed due to
plastic flow of the target material around the penetrator at high
velocities. This was observed in experiments on metals. Hill's model,
however, is semi-empirical because he uses an expression for inertial
resistance with constants to be determined from experiments. For
ground masses, no experimental data have been found yet on the
velocity of penetration at which cavitation occurs.

Inertial effects may be present in the high rate of straining of
clay. Whether inertial effects have been reflected in part or in whole
by incorporating strain rate effects in clay is uncertain.

So far, only deep penetration has been considered. The shallow
penetration mechanism may be different. Free-surface or shallow
penetration effects will be significant only if 1) the shallow stage
makes up a substantial portion of the penetration process and 2) its
mechanism is different. Thus, we need to determine if shallow
penetration is different and if so, the extent by which it differs from
deep penetration. If it is important, we also have to know to which
category, shallow or deep, our problem cases belong.

An approximate method to model shallow penetration using
the results from the Strain Path Method is to assume that the strain
rate field around the penetrator is the same as that for deep
penetration but extending only up to the level of the free surface.
Then the energy required to cause this deformation is evaluated
which can be expressed in terms of the depth of embedment.

We also have to determine how accurate it is to use the blunt-
tip simple pile geometry to model general penetrator shapes for
impact penetration.

The penetration depth model for frictional materials has been
applied to sand assuming it is an incompressible material. However,
sands exhibit compressibility. Therefore, this has to be addressed in
further research, also.
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i lusion

A simple analytical model for penetration depth prediction
based on point resistance of the simple pile from the Strain Path
Method has been developed for incompressible cohesive and
frictional ground. It requires only a few parameters which can be
casily determined (sy, £y for clays and ¢', ey for sands). The model
gives reasonable predictions for sands using published data on
impact penetration by Wang (1971). On the average, for the dense
sand, the predictions are within 10% of actual values; for the loose
sand, within 30%. This is satisfactory considering the simple
approximation used. The model significantly overpredicts
penetration depths in compacted clay using experimental data by
Murff & Coyle (1973).

Incorporating effects of factors such as strain rate and skin
friction can be done in a similarly simple manner. Including effects
of skin friction in dry loose sands using data by Wang improves the
predictions conmsiderably. Including the effects of strain rate and skin
friction in clays using data by Murff brings predictions close to the
measured values. This indicates that strain rate and skin friction
effects are important in penetration into overconsolidated clays and
that the Strain Path Method can be extended to include these effects
to give realistic estimates of penetration depth.

Since we can predict penetration depth reasonably well using a
Strain Path-based approach, we can say that the basic principles of
the Strain Path Method are adequate to model the rapid penetration
process.

The effects of inertia and compressibility of the target material,
the free surface and penetrator tip shapes are not well understood
yet and need to be investigated in further research.
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Fig. 6.3 Point Resistance Factor vs. Friction Angle
(after Elghaib 1989)
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Fig. 6.4 Point Resistance Factor vs. Axial Yield Strain
(after Elghaib 1989)
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CHAPTER 7
CONCLUSIONS

The 1989 research in Propellant Embedded Anchors had an
experimental and an analytical modelling component.

Experimentally, we completed our initial test series with small
scale (3.7 mm diameter) penetrators and 5.1 x 10.2 cm cylindrical
models with varying joint spacing and consisting of gypsum or resin.
Slow and rapid penetration tests as well as pullout tests were
conducted. The results consisted again of observing penetration and
crack pattern, of fractography, of force-displacement measurements
(in the case of slow penetration and puliont) and of confining stress
measurements during the entire penetration-pullout tests. The
gypsum tests confirmed the results of the preceding test series while
the resin tests, particularly those with a modified curing agent
content showed more ductile behavior both in penetration and
pullout. Also very interesting is the fact that the penetration energy
during slow penetration compares well with the penetration energy
during rapid penetration; it provides a reliable bound. The confining
stress measurements also yielded new information. First it was
conclusively shown that stresses remain locked into the medium
after pullout; second, it was possible to backfigure a friction
coefficient between medium and penetrator (at present with quite a
bit of scatter, however).

In preparation for the validation test series to be conducted
this (1990) and next year, we developed and built the testing '
equipment consisting of a Hilti 600N gun (donated by Hilti)
instrumented with an accelerometer and of a strain gauge
instrumented model as main components. The penetrator size and
the model diameter were doubled, compared to the preceding test
series (~6 mm and ~10 cm respectively). The initial tests, the
validation tests and the tests at UC Berkeley, comprise thus a series
of increasingly larger scale experiments which will provide a solid
basis for checking our analytical scaling relations. The validation test
equipment was calibrated and satisfactorily checked in a few shake
down tests with wood and gypsum.

N

£
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Our modelling effort is based on the strain path method. As
stated in earlier reports, this method correctly represents the
fundamental physics of penetration and can make use of standard
parameters. Starting with a velocity field, a strain field is
determined from which, in turn, the stress field is derived using the

"appropriate constitutive relations and equilibrium conditions. The

advantage of the method, compared to cavity expansion approaches,
is the fact that the entire two-dimensional stress field can be derived
which is essential for the determination of penetration depth and
pullout resistance as well as for the extension to brittle discontinua.
At the start of the PEA modelling effort, a version of the strain
path method for ductile, incompressible and frictionless material
existed; also initial work on a strain path based solution for ductile
frictionless compressible and incompressible materials was
completed (centerline stresses only). As a first step in our work, we
developed the ductile frictional solutions for the complete stress
field. This sets the stage for incorporation of constitutive relations
for brittle continua and discontinua (i.e. intact and jointed rock). In
addition, the ductile frictional solutions provide also a bound for the
jointed rock. In incorporating the constitutive relations for brittle
discontinua, we will make use of the MIT jointed rock model
expanded by observations in the initial test series. These
observations showed that the joints concentrate cracking in the intact
material bounded by the joints, that the cracking intensity in the
intact blocks is roughly the same, independent of joint spacing, and
that cracking intensity has a substantial effect on pullout resistance.
We expect that the complete stress field computed with the
strain path method will provide us with the information to predict
penctration depth and pullout resistance. To make sure that the
strain path based approach is reasonable for rapid penetration, for
which it has not been used so far, and to have a simpler penetration
prediction method, we pursued a second modelling effort during
1989. This consisted of the development of a penetration depth
prediction method for ductile incompressible non-frictional and
frictional materials. In this method the strain path method is used
but only the point resistance is determined (not the entire stress
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field). Correction factors were introduced to consider strain rate
effects and interface (penetrator-medium) friction effects, which can
be determined with standard laboratory tests. The results were
compared to field observations reported in the literature. The
comparison is satisfactory both for clay (frictionless) and sand
(frictional). The goals of having a first indication that the strain path
method can predict penetration depth in rapid penetration and of
having a simple penetration depth prediction method have thus been
achieved. We intend to extend this approach to include free surface
effects, material compressibility and, possibly, brittle material
properties.

With regard to publications, a paper, "Model Experiments for
Propellant Embedded Anchors”, on the 1988/89 initial test series has
been submitted for publication in Rock Mechanics and Rock
Engineering. The 1987 review of field tests by the Navy is being
written up and will be coauthored by NCEL- and MIT people.
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APPENDIX A
- CALCULATION OF €g AND ) FROM VOLTAGE READOUTS

The circumferential strain (ey) and stress (o) can be determined using the following

equations:

measured voltage (mV) 6
€p= x 2000 x 10
i nput voltage (v)

- 0'0 = E 60
where E = Young’s modulus = 2 x 10° MPa

For example, let the measured voltage = 0.35 mV and the input voltage = 2 V; then

0.35 -8 -5

x 2000 x 10 © = 350 x 10

£, =
- g 9

6

op=2x 10° MPa x 350 x 10~9 = 70 MPa



132

APPENDIX B
DIMENSIONS AND YIELD STRAIN OF THE CLAMP

B A
eyl :
| = B A
5.1 i ; :
s..':m 14.25 £E,0, = —LE&Qq
W ] B A
g ,{ Unit: mm
The areas at cross section AA and BB are:
_ _ —6_ 2 _
Across section AA = 1425x058 =8266x10 m” = 2y
- - 6 2 _
A ross section BB = (871 + 4.2)x 0.58 = 4.588x 10 " m" = a,

g

o = 0.555
“1

The yield strain of stainless steel is 0.2 %.

The forces acting on cross section BB and A A are equal such that:

Eea) = E €9 Ao, , where € and ¢, are the hoop strains at AA and BE,
respectively.

When €, reaches its yield limit (0.2 %), €, becomes

)

(= & =02%X0.555=0111%

That is, if £ at c1oss section AA is greater than 0.11 %, then yielding must have occurred
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APPENDIX C
DETAILS OF THE STRAIN PATH METHOD
AND ITS APPLICATION TO PENETRATION PREDICTION

Appendix C.1
The Strain Path Method for the Simple Piles P .
Incompressible Cohesive Materials (Clays) (Baligh 1985a, b)

The Strain Path Method is an approximate analytical technique
developed by Baligh (1985a, b) to describe fundamental mechanisms
of deep penetration in soil. It is assumed that due to the severe
kinematic constraints related to deep penetration problems,
deformations and strains are essentially independent of the shearing
resistance of the soil. Therefore, deep penetration problems are
considered to be strain-controlied and deformations and strains can
be determined with reasonable accuracy based only on kinematic
considerations and boundary conditions. Deviatoric (shear) stresses
can then be determined in an approximate way by assuming a
constitutive mode! and finally octahedral stresses are solved by
imposing equilibrium. The steps in applying the Strain Path Method
to steady deep penetration in incompressible cohesive materials by
the simple pile are given in the following sections. Initially, one
estimates the velocity field in the target due to penetration by the
simple pile at a constant velocity. This is done by using the solution
for a spherical source in an ideal fluid in uniform flow.

1. Veloci iel

Consider a single spherical source located at r = 0 in a spherical
coordinate system (Fig. C.1(a)) emitting volume V per unit time. The
radius of the spherical cavity after a time t will be given by:

4
Vi= ?ER (la)

R=[zzvﬂ (1b)
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If we expand such a cavity in the soil at the rate V, an element
A originally located a distance po from the center of the cavity

(origin) would be displaced according to the following conservation of
volume equation:

4 3_4 3 4 .3
IR =3P, +-§uR (22)

where p = new distance of element A from the origin.
Solving for p(t):

1/3
3
p(Y) = [Pi‘*‘ R (1)} (2b)

Differentiating p(t) with time will give us the radial velocity vy of the
particles in the medium

-2 /3 3
_dp _irs ., .3 d(R )
Beg TR R0 Ty (32)
2§
P 4x p?- (3b)

In the cylindrical coordinate system (Fig. C.1(b)), the velocity
components are given by:

sin
radial: v, = % 2¢
g (4)
] V cos ¢
vertical: Va= a2
Y
where p2 =12 + 22

¢ = arctan (r/z)
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For a single spherical source in a uniform flow field with
velocity U in the z-direction (Fig. C.2), the soil particle velocity
components are given by:

Vi = O (5)

VZ=U+VZO

where v;© and v;© correspond to the point source solution given by
Eq. (4).

2. Soil Deformations
In the cylindrical coordinate system, the velocity components
vr and vz in terms of the stream function y are given by:

]
i

oy
ViTTar (6)
v

_1
T

oy
TTT
Integrating the above equations for v, using Eq. (5) and (4)

2
A% r
V= groose- U N

The rate of volume discharge V can be related to the area of the
cylindrical cavity and velocity of penetration U:

V= (mRHU
[V
R= T'C—U—

Therefore y can be expressed as:

(8)

2
veEooe - I (9)
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To arrive at the expression for the deformation of soil particles, we
make use of the property of the streamline: y = constant. Thus, for
any given streamline, the value of y in the far field equals its value

in the near field:

¥ far field = ¥ near field (10)
I=T, r=r
(‘P:-“) (¢=¢)

This gives us the streamline or path of any particle originally located
at a distance r1g:

I 2 (70)2 1
(%) = (%) + 500 (11a)

When 1, = 0, corresponding to soil elements initially located at the
centerline, Eq. (11) yields the analytical expression for the geometry
of the simple pile:

2
(%) = 70+ cost) (11b)

Thus, the simple pile as given by Eq. (11b) has the following
characteristics (Fig. C.3):

1. The tip is located at z=-R/2.

2. The parameter R actually represents the radius of the

simple pile at sufficiently large distance behind the tip.

3. Theoretically, the radius of the simple pile increases
indefinitely but for all practical purposes, it can be assumed
to have a uniform radius equal to R from point C in Fig.

C.3 located 4R behind the tip.

Although seemingly complicated and apparently not very
practical, the simple pile geometry was selected in order to simplify
the generation and presentation of solutions and hence address the
fundamental mechanism of penetration without cumbersome
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numerical details. The geometry of the simple pile guarantees the
absence of a relative normal velocity of the soil-pile interface (i.e.,
the soil particle velocities are in the tangential direction with respect
to the pile surface).

3. Strain Rates

The nonvanishing components of strain rates in axisymmetric
penetration in an infinite medium are three normal strain rates
{positive when compressive):

A

="

€ -

=" oz (12a)
vll.'

Em=_T

and one (tensorial) shearing strain rate
- 1 avr avz
om0+ 3) (12b)

where v; and v, are positive in the positive r and z directions.
Carrying out the differentiation using Eq. (5):

: UR’
En == FAM(¢)
~ UR’
e, == Az (0)
zz 493 (13)
2
ém _ UR3
4p
_ 2
an = — &Anm})

4p°
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where Ar(®) = cosZ¢p -2sinZo
Agzz(®) = sin2¢ — 2c0s2¢
Ar(®) =-3/2 sin(2¢)
¢ =arctan (r/z)
p =t/sind

In view of the assumed incompressibility of the soil, the sum of
the three normal strain rates vanishes and only three components
are sufficient to fully describe the sets of change in soil strains. The

three deviatoric strain rate components E, (1.:7-‘, ﬁ,. E, defined by

the expressions:

£

E:= _

E,=7(e,. — &) (14)
G

E =o€,

are convenient because they provide a clear picture of the shearing
modes of the soil in axisymmetric problems. Under idealized testing

conditions, conventional triaxial tests impose El type of straining
rates and 52=E3=0; pressuremeter tests or cylindrical cavity
expansion apply Ez‘ and simple shear tests impose Es’ modes of

shearing. Furthermore, the deviatoric strain rates E.  have an equal
relative effect on the second invariant of the deviatoric strain rates,

- .21 . .
E (where E =73 &, €, )
1/2

. 1{.: 2 j
E=‘\/EE]+E.2+E (15)

Combining Eq. (14) and Eq. (13) and substituting in Eq. (15):
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i UR® 1
272 53 (16)

where p = (12 + z2)1/2

4. Strain Paths

4

in he Pil

For soil elements close to the pile, the deviatoric strain paths

are shown in Fig C.4; they were obtained by numerical integration
taking into consideration changes in geometry. The strain paths
indicate that:

1. The straining levels close to the pile are much greater than
normally imposed in common laboratory and pressuremeter
tests as illustrated by the shaded zones in Fig. C.4., Therefore,
the post-peak behavior of the clay should be expected to
have an important effect on stresses and pore pressures in
the soil close to the pile.

2. Ahead of the pile, straining of the soil located near the axis

takes place essentially due to Ei (vertical compression) with
possibly some contribution of E3 well before Ez (cylindrical
expansion) is felt.

3. In reaching the final state of strain behind the tip (i.e., at

large values of z), the strain components of a soil element
exhibit significant reversals (The reversal of strain paths

and the high straining levels caused by penetration have a
major influence on stress predictions).

4.2 Far Field Strains

At sufficiently large distances from the pile, changes in soil

geometry may be neglected, streamlines become approximately
vertical and hence any strain rate component such as €2z can be

expressed as:

de
= B =)
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where 'd"f'='E (18)

Therefore, integrating Eq. (17) using Eq. (13) and (18) gives us €£z,.
The other strain rate components are determined similarly. Thus,
the cylindrical strain components in the far field are given by:

e,=(%) B_(0)
R 2

enz(-f;)Bn(¢) (19)
o2

Eee’(i?) B oo ®

where B{(¢) = 1+cosdp(1+sinZd)
B,,(¢) = -cosdpsinZ¢
Bgo(9) = -(1+cos0)
Brz(¢) = -sin3¢

Defining the deviatoric strain components E;(Ej, E2, E3) by the
expressions:

E, =&
E2= 7'-;(6”—599) (20)
E,= FEn

closed form expressions for the deviatoric strain components E; in
the far field can be determined by direct substitution of Eq. (19) into
Eq. (20).

1 .
The second invariant of the deviatoric strains E (E2=§EijEij) is of

special significance for isotropic yielding of the von Mises type. In
axisymmetric problems
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1
E=— [E2 + Ep2 + E32)12 21
(-—2[1 2 3<] (21)

Eq. (21), (20) and (19) indicate that in the far field, where changes in
-geometry can be neglected, E is given by the expression

e= (B[540 cosp vino)] (22)

The elastic-plastic boundary, where E=E, would be defined, using Eq.
(22}, as

_ 3
14+cos¢ .
r=R——-\/1E=-[ 53 (1+cos¢+su12¢)}

y (23)

Eq. (22) describes the geometry of the contour lines E=constant in the
far field as shown in Fig. C.5(b). Results in Fig. C.5(b) also show
contour lines of E close to the pile, obtained by numerical integration
after incorporating changes in geometry. Fig. C.5(a) presents
spherical contour lines of E in the case of a simple pile with radius
R=1.78 cm penetrating at a velocity U=2 cm/sec as in standard cone
penetration testing.

nstitutive Model ndtl- ilin
Stresses

The Prandtl-Reuss (P-R) total stress model (Fig. C.6) is the
simplest yet relevant model of deviatoric behavior. The Prandtl-
Reuss material is assumed to be incompressible, isotropic, inviscid
and linearly elastic prior to yield. Moreover, it obeys the von Mises
yield criterion, exhibits no strain hardening or softening during
plastic flow (i.e., it is perfectly plastic) and follows an associated flow
rule.
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For axisymmetric problems, the stress-strain relationships are
given by the following:

2_ 2,2
S =5k (24)

where k is a measure of the undrained shear strength of the soil and
. N 1 .
the second invariant of the deviatoric stress state S (Sz=§SijSij) is

given by

1

2. 2 2 g
S=TZ[SI+SZ+33’): §20 (25)
where the deviatoric (shear) stress components S; are defined by

1
$,=0, = 3(0: +04)

o
S,= 5 (0u —O4) (26)
S,= 36,

where o5, O, Ggpg, O are the vertical, radial, tangential (or hoop),
and meridional shear stress components in a cylindrical frame,
respectively. The stress-strain relationships for a P-R material
actually describe a bilinear shear behavior given by the following
expressions:

: . S, . S

in the elastic range: E;E; i=1,23 and E= 2G (27)
. . = _ S, 2 Eo. .

in the plastic range: E = iG td3 Ysi' i=1,2,3 (28)

where G is the (undrained) shear modulus of the soil and the
deviatoric strain rate E during simple pile penetration is given by
Eq. (16).

A description of the undrained clay behavior by means of the
P-R bilinear model requires estimates of the shear strength

—
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parameter k and the shear stiffness G. Setting $S1=52=0 in Eq. (24) to
(26), the strength parameter k equals sy(DSS) where s,(DSS) is the
undrained shear strength (maximum value of or;) of the clay in
direct simple shearing. Alternatively, according to the P-R model,

25 .(T) . .
k= \"/5 where sy(T) represents the undrained shear strengths in

. .. . . 1
either triaxial compression or extension tests (5,=7]0,~0,| at peak

Tesistance).

The most significant model limitations in the P-R material
when simulating real undrained behavior of clays are believed to be:
1) clay behavior is nonlinear at small strain levels, 2) clay may be
anisotropic and exhibit strain softening especially for anisotropically
consolidated clays and 3) rate effects are neglected by the model.

6 Equilibri | Octahedral S

After determining the deviatoric (shear) stresses by means of a
constitutive soil model, the octahedral stresses can now be
determined by considering equilibrium.

Octahedral stresses ¢ during undrained penetration must
satisfy equilibrium. For our problem of vertical axisymmetric
penetration, the stress components in the cylindrical frame can be
written in terms of ¢ and the deviatoric deviatoric stresses S;:

§,=0, —3(0,, +C4)
3
SZ= TJ(O," —Om) (29)
0,=-5(V35,-5)+0c
cr,,=;713-S3
where 0=-;—(csrr +0,, +0,) (30)

For deep penetration, the magnitude of changes in stresses in
the soil around the tip due to its weight are negligible (i.e., body
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forces are small compared to stress gradients). Equilibrium can thus
expressed in terms of ¢ and S;.

In the radial direction,

B e e
ar"'gr’ CE II:E 2 \/g 0z r (31)

In the vertical direction,

% 4 f9s, , 9§, El]
5z 82 &S/l TAm YT (32)

For sufficiently smooth stress fields, differentiation of Eq. (31) and
(32) indicates that equilibrium also requires that o satisfies the

Poisson equation:

19 dg.,
Viosg,  E=rypOE)tg (33)

Therefore, given the deviatoric stress Sj, the octahedral stress o
can be computed in a number of ways. One approach consists of
integrating Eq. (31) along radial lines (z=constant) from infinity
where 0=0,, the initial octahedral stress in the soil, to any radial
distance 1. Alternatively, o can be calculated from Eq. (32) by
integration along vertical lines or from both Eq. (31) and (32) along
any integration path; or by solving Eq. (33). In case of exact solutions,
all approaches lead to unique values of o independent of the
integration path. In approximate solutions like the Strain Path
Method (where the strain field is assumed to be independent of the
constitutive behavior of the material), gr and g; do not satisfy Eq.
(33) everywhere in the soil. Discrepancies between o values
estimated on the basis of Eq. (31), (32) and (33) represent a measure
of sensitivity to analytic simplification and an index for the
reliability of S; at various locations around the penetrating pile.
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Fig. C.1 Spherical and Cylindrical Coordinate Systems
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Fig. C.2 A spherical source in an ideal fiuid in uniform flow
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Appendix C.2
Simple Pile Point Resi 0 Cl . E Method
Baligh(1985a)

The absence of viscous effects in the P-R soil model and the
neglect of inertial effects imply that the quasi-static penetration of
the simple pile with velocity U requires work to be done at a steady
rate of

where Pgp is the estimated upper bound force required to push the
simple pile. In view of the smoothness of the simple pile shaft, the
power W s required to overcome tip resistance only. Neglecting the
small negative work done in order to achieve simple upper bound
solutions, this power can be divided into three components:

W=W.+ W, +W, (35)

The first component, W, is needed to overcome the initial
stresses in the ground and is given by:

W,=zR'Ug, (36)

where o, is the assumed initial isotropic stress in the soil prior to
penetration,

The second component, W, is needed to cause plastic flow of

P
the soil in the yielded zone surrounding the pile and the third, W., is
the rate of energy required by soil elasticity outside the plastic
domain.

For the P-R model, the rate of plastic work dissipation is given
by:
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w,= [dW, (37)

A

where dW; is the rate of energy dissipated per unit volume and V,
is the volume of the plastic zone. It can be shown that

dW,=V6KEdV (38)

where E is the octahedral strain rate. Using Eq. (16) and (34), Eq.
(33) can be expressed as, in spherical coordinates,

Wp=ékR2UI%\-§- (39)

A\

The integral can be expressed as

z LY

| = I L o (40)

where p;{¢) defines the simple pile geometry and p,(¢) that of the
elastic-plastic boundary. They are given by Eq. (11a) and (11b):

L
2
I cos ¢

PO =Ty =Rg,0)i g,@)= (L5522 ) co=aean () (41a)

1
2
Iy 1+cosd

P(d)= qu,, r,=Rg,(0); g2(¢)—j——-[_"2——(1+008¢ +sin ¢)] (41b)

¥
dV is given by:

dV = p2 sing d¢ d8 : (42)
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Carrying out the integration in Eq. (39) using Eq. (40), (41) and (42):

W, = tRkU%log (2) - 2 - 41og (E )] (43)
where E,= 7%3 (44)

using Eq. (24) and (27).

The elastic strain energy density in the plastic zone doesn't vary
during penetration and hence changes in the elastic strain energy
density take place only in the elastic zone. The rate of elastic energy
change is thus given by

W== de. (45)

where dW, is the elastic strain energy density change rate and Ve is
the elastic soil domain outside the elastic-plastic boundary. dW, can
be expressed as

dE

J is given by:

(0L

(47)

Performing the integration of Eq. (41) as in the plastic energy change
rate case using Eq. (46), (47) and (42):

W .= nR’kU (48)
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W_.and W. can be expressed as

W,=aR%kU- N, (49)
W.=1R’kU - N, (50)

_ V3 3
where N, = ¥{log {3)-2-410g (E 5 (51)
N.=1 (52)

Let's define the simple pile point resistance qsp and point resistance
factor Nyp

Q= —F =N, k+0, (53)

Substituting Eq. (49), (50) and (36) into Eq.(34), we have
N, =N,+N, = 1+ %log (2) -2 - 4log (E )] (54)

The expression for Ngp indicates the following features of this
estimated upper bound for simple pile penetration resistance:

1. The pile radius R has no effect on the point resistance gsp of
the simple pile as defined by Eq. (53).

2. An increase in the initial isotropic stress oo causes an equal
increase in qsp. Practically, this describes the effect of depth
below the ground on penetration resistance. The
independence of Ngp from depth is intimately related to the
assumed absence of frictional behavior of the soil during
undrained penetration. For anisotropic yielding, k=su,(DSS)

2
and kzﬁsu(TC).

3. The point resistance qgp is proportional to the shear
strength parameter k.
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4. The point resistance factor Ngp of the simple pile is
principally controlled by the deviatoric yield strain E,y
because it determines the size of the plastic zone and hence
plastic work for penetration. In direct simple shear tests,

]
Ey=7€' Yy(DSS), where Yy(DSS) is the engineering strain at

. NP . 1 )
yield and in triaxial compression tests, E,:ﬁay, where gy 15

the axial strain at yield.
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A ndix

Tte Simole Pile Paint Resi . Clays - Centerli lys
(Elghaib 1989)

1, Strains

Along the pile centerline, soil elements are subjected to triaxial
compression mode of shearing, i.e.,

=0 (55)

For the simple pile geometry, the axial strain €z is given by

R2
su”‘(l‘ﬁ) (56)
which for sufficiently large depth can be approximated by

. R
2= (57)

The extent of the plastic zone is then

1

dey (58)

Zr
R

2. Shear Stresses

Deviatoric stresses also reduce to one component, S1=(0zz-Oyr).
In the elastic zone

17 422 "R°TR (59)
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In the plastic zone, S; is directly related to the undrained shear
strength measure k:

$,=V3k (60)

3. Equilibri

The octahedral stress o is obtained from the equation of
vertical equilibrium (Eq. (32)):

do _ L(__%_ﬁ E]
& T\ & T (61)

S
Along the centerline, S3=0 and r=0; however —r:”- is finite in

magnitude. In the elastic zone, the following expression is valid

S, _+/30R’?
TT 2 (62)

In the plastic zone, assuming a) no curvature along the centerline

streamline and b) an elastic-plastic representation of soil behavior,

S, ~3GR* 1
} (63)

3
—I' = 3 .G
2z L 25 =>L
1 2le

where 4 is the plastic multiplier: R AL (64)

Therefore,

o33k 2
r z 2+(-zz_)2:1 (65)
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S
Using the expression of —2 and the equilibrium equation, the change

in mean stress can be found: for the bilinear model, Ao=0 in the
elastic zone (z<-zp). Thus, the change in the octahedral stress at the

z
elastic-plastic boundary, Aop(z=-zp)=0. In the plastic zone (-ﬁ->—ip),

the vertical equilibrium for the case of a perfectly plastic material is
written

= 2+(i)2 * (66)

The integration of Eq.(66) from the plastic boundary to any element
at a depth z (-z,/R<z/R<-0.5) gives the expression for the mean stress
Ac induced by undrained penetration in the plastic zone:

Ac

z 2
so= 2 +/in3 - 42 (67)

4. Point Resistance
Based on centerline analysis, the point resistance qc of the

simple pile is given as

1.=09,(F =-05) (68)

In this case, the net point resistance Aqc (=qc-Op) is obtained from
the stress state at the pile tip

2
ch=AG+ﬁk (69)

The point resistance factor N, for centerline analysis defined as
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¢~ 5 ,(TC) (70)

where sy(TC) is the undrained shear strength in a triaxial

‘compression mode of shearing and su('IC)=‘g-ik is thus given by

1,213, 4
Ne=2in(3+35-)+3 (71)
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ndix 4
il i istance i - ine _Anal
(Elghaib 1989)

The soil is also described using a bilinear elastic-perfectly
plastic model. Failure (yield) is described by an extended von Mises
criterion:

2—
5"~k o"=0 (72)

where k is the friction ratio (the ratio of the shear to the normal
effective stress) at failure. In triaxial space, this reduces to

5, =/3k (73)

The friction ratio k can be defined in terms of the friction
angle ¢' measured in triaxial compression by equating the von Mises

criterion with the Mohr-Coulomb criterion:

- sin ¢’
k= Zﬁm (74)

For the centerline solution of the simple pile, the octahedral
stress can be obtained by integration of the equilibrium equation in
the vertical direction (z-direction). Under all previous assumptions in
the elastic zone (z<-zp or e<g€y), the mean effective stress remains
constant and is equal to the initial isotropic effective stress oo’ In the
plastic zone (zp>-zp or £>¢y), the equilibrium reduces to the following
first order differential equation

do ' _ 4sin ¢' 6 o

dz 3 in ¢’ yZ I §
(1+smd>)[24.({_")}z (75)

P
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which can be integrated in closed form. The normalized octahedral
stress induced in the plastic zone is thus given by

o_f=[ "'(_)] (76)

2sind’
where X = Tiame . At the tip of the simple pile, z/R=-1/2, the mean

effective stress is found to be:

4
'(dp)

2
Uro =[%"'§'(%p)] (77)

Lv)

The point resistance factor Ng (=qc'/00'=022'(tip)/0o") is then
obtained from the Mohr circle of stress in the plastic zone:

3(l+sm¢)
(3—sm¢)

hz2 -z

P (78)

Combining Eq. (77) and (78), the point resistance factor is obtained:

i x
_ ¥l+sin¢) s Zp z]
No= 35 o) ﬁ*?(T) (79)

Eq. (79) shows that Ng is a function of the friction angle ¢' and the

¥4
extent of the plastic zone as expressed by _ig- The latter is directly

related, in the case of an incompressible material, to the axial yield
strain gy of the sand:

z
P

R

—

1
ey (80)
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Hence, the simple pile solution for the point resistance factor (in an
incompressible material) can be written as

N

_ X1+sing")(, 21)‘
(81)

o= B-sne) 7 3E,
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